Время движения по окружности. Движение материальной точки по окружности

Движение по окружности – частный случай криволинейного движения. Скорость тела в любой точке криволинейной траектории направлена по касательной к ней (рис.2.1). Скорость как вектор при этом может изменяться и по модулю (величине) и по направлению. Если модуль скоростиостается неизменным, то говорят оравномерном криволинейном движении.

Пусть тело движется по окружности с постоянной по величине скоростью из точки 1 в точку 2.

При этом тело пройдет путь, равный длине дуги ℓ 12 между точками 1 и 2 за времяt. За это же времяtрадиус- векторR, проведенный из центра окружности 0 к точке, повернется на угол Δφ.

Вектор скорости в точке 2 отличается от вектора скорости в точке 1 по направлению на величину ΔV:

;

Для характеристики изменения вектора скорости на величину δv введем ускорение:

(2.4)

Вектор в любой точке траектории направлен по радиусуRкцентру окружности перпендикулярно к вектору скоростиV 2 . Поэтому ускорение, характеризующее при криволинейном движении изменение скоростипо направлению, называютцентростремительным или нормальным . Таким образом, движение точки по окружности с постоянной по модулю скоростью являетсяускоренным .

Если скорость изменяется не только по направлению, но и по модулю (величине), то кроме нормального ускорениявводят еще икасательное (тангенциальное) ускорение, которое характеризует изменение скорости по величине:

или

Направлен вектор по касательной в любой точке траектории (т.е. совпадает с направлением вектора). Угол между векторамииравен 90 0 .

Полное ускорение точки, движущейся по криволинейной траектории, определяется как векторная сумма (рис.2.1.).

.

Модуль вектора
.

Угловая скорость и угловое ускорение

При движении материальной точки по окружности радиус-векторR, проведенный из центра окружности О к точке, поворачивается на угол Δφ (рис.2.1). Для характеристики вращения вводятся понятия угловой скорости ω и углового ускорения ε.

Угол φ можно измерять в радианах. 1 рад равен углу, который опирается на дугу ℓ, равную радиусуRокружности, т.е.

или 12 = R φ (2.5.)

Продифференцируем уравнение (2.5.)

(2.6.)

Величина dℓ/dt=V мгн. Величину ω =dφ/dtназываютугловой скоростью (измеряется в рад/с). Получим связь между линейной и угловой скоростями:

Величина ω векторная. Направление вектораопределяетсяправилом винта (буравчика) : оно совпадает с направлением перемещения винта, ориентированного вдоль оси вращения точки или тела и вращаемого в направлении поворота тела (рис.2.2), т.е.
.

Угловым ускорением называется векторная величина производная от угловой скорости (мгновенное угловое ускорение)

, (2.8.)

Вектор совпадает с осью вращения и направлен в туже сторону, что и вектор, если вращение ускоренное, и в противоположную, если вращение замедленное.

Число оборотов n тела в единицу времени называют частотой вращения .

Время Т одного полного оборота тела называют периодом вращения . При этом R опишет угол Δφ=2π радиан

С учетом сказанного

, (2.9)

Уравнение (2.8) можно записать следующим образом:

(2.10)

Тогда тангенциальная составляющая ускорения

а  =R(2.11)

Нормальное ускорение а n можно выразить следующим образом:

с учетом (2.7) и (2.9)

(2.12)

Тогда полное ускорение .

Для вращательного движения с постоянным угловым ускорением можно записать уравнение кинематики по аналогии с уравнением (2.1) – (2.3) для поступательного движения:

,

.

4.1. Движение по окружности с постоянной скоростью.

Движение по окружности - простейший вид криволинейного движения.

4.1.1. Криволинейное движение - движение, траекторий которого является кривая линия.

Для движения по окружности с постоянной скоростью:

1) траектория движения - окружность;

2) вектор скорости направлен по касательной к окружности;

3) вектор скорости постоянно меняет свое направление;

4) за изменение направления скорости отвечает ускорение, называемое центростремительным (или нормальным) ускорением;

5) центростремительное ускорение меняет только направление вектора скорости, при этом модуль скорости остается неизменным;

6) центростремительное ускорение направлено к центру окружности, по которой происходит движение (центростремительное ускорение всегда перпендикулярно вектору скорости).

4.1.2. Период (T ) - время одного полного оборота по окружности.

Это величина постоянная, так как длина окружности постоянная и скорость движения постоянна

4.1.3 Частота - число полных оборотов за 1 с.

По сути, частота отвечает на вопрос: как быстро вращается тело?

4.1.4. Линейная скорость - показывает, какой путь проходит тело за 1 с (это та же самая скорость, о которой говорилось в предыдущих темах)

где R - радиус окружности.

4.1.5. Угловая скорость показывает, на какой угол поворачивается тело за 1 с.

где - угол, на который повернулось тело за время

4.1.6. Центростремительное ускорение

Напомним, что центростремительное ускорение отвечает только за поворот вектора скорости. При этом, так как скорость постоянная величина, то значение ускорения тоже постоянно.

4.1.7. Закон изменения угла поворота

Это полный аналог закона движения при постоянной скорости:

Роль координаты x играет угол роль начальной координаты играет скорость - угловая скорость И с формулой следует работать так же, как ранее работали с формулой закона равномерного движения.

4.2. Движение по окружности с постоянным ускорением.

4.2.1. Тангенциальное ускорение

Центростремительное ускорение отвечает за изменение направления вектора скорости, но если еще меняется и модуль скорости, то необходимо ввести величину отвечающую за это - тангенциальное ускорение

Из вида формулы ясно, что - это обычное ускорение, о котором говорилось раньше. Если то справедливы формулы равноускоренного движения:

где S - путь, который проходит тело по окружности.

Итак, еще раз подчеркнем, отвечает за изменение модуля скорости.

4.2.2. Угловое ускорение

Мы ввели аналог скорости для движения по окружности - угловая скорость. Естественно будет ввести и аналог ускорения - угловое ускорение

Угловое ускорение связано с тангенциальным ускорением:

Из формулы видно, что если тангенциальное ускорение постоянно, то и угловое ускорение будет постоянно. Тогда можем записать:

Формула является полным аналогом закона равнопеременного движения, поэтому работать с этой формулой мы уже умеем.

4.2.3. Полное ускорение

Центростремительное (или нормальное) и тангенциальное ускорения не являются самостоятельными. На самом деле, это проекции полного ускорения на нормальную (направлена по радиусу окружности, то есть перпендикулярно скорости) и тангенциальную (направлена по касательной к окружности в сторону, куда направлен вектор скорости) оси. Поэтому

Нормальная и тангенциальные оси всегда перпендикулярны, следовательно, абсолютно всегда модуль полного ускорения можно найти по формуле:

4.4. Движение по криволинейной траектории.

Движение по окружности является частным видом криволинейного движения. В общем случае, когда траектория представляет собой произвольную кривую (см. рис.), всю траекторию можно разбить на участки: AB и DE - прямолинейные участки, для которых справедливы все формулы движения по прямой; а для каждой участка, который нельзя рассмотреть как прямую, строим касательную окружность (окружность, которая касается траектории только в этой точке) - в точках C и D . Радиус касательной окружности называется радиусом кривизны. В каждой точке траектории радиус кривизны имеет свое значение.

Формула для нахождения радиуса кривизны :

где - нормальное ускорение в данной точке (проекция полного ускорения на ось, перпендикулярную вектору скорости).



Важным частным случаем движения частицы по заданной траектории является движение по окружности. Положение частицы на окружности (рис. 46) можно задавать, указывая не расстояние от некоторой начальной точки А, а угол образуемый радиусом, проведенным из центра О окружности к частице, с радиусом, проведенным в начальную точку А.

Наряду со скоростью движения по траектории, которая определяется как

удобно ввести угловую скорость, характеризующую быстроту изменения угла

Скорость движения по траектории называют также линейной скоростью. Установим связь между линейной и угловой скоростями. Длина дуги I, стягивающей угол равна где - радиус окружности, а угол измерен в радианах. Поэтому и угловая скорость со связана с линейной скоростью соотношением

Рис. 46. Угол задает положение точки на окружности

Ускорение при движении по окружности, как и при произвольном криволинейном движении, имеет в общем случае две составляющие: тангенциальную, направленную по касательной к окружности и характеризующую быстроту изменения величины скорости и нормальную, направленную к центру окружности и характеризующую быстроту изменения направления скорости.

Значение нормальной составляющей ускорения, называемой в этом случае (движение по окружности) центростремительным ускорением, дается общей формулой (3) § 8, в которой теперь линейную скорость можно выразить через угловую скорость с помощью формулы (3):

Здесь радиус окружности, разумеется, одинаков для всех точек траектории.

При равномерном движении по окружности, когда значение постоянно, угловая скорость со, как видно из (3), тоже постоянна. В этом случае ее иногда называют циклической частотой.

Период и частота. Для характеристики равномерного движения по окружности наряду с со удобно использовать период обращения Т, определяемый как время, в течение которого совершается один полный оборот, и частоту - величину, обратную периоду Т, которая равна числу оборотов за единицу времени:

Из определения (2) угловой скорости следует связь между величинами

Это соотношение позволяет записать формулу (4) для центростремительного ускорения еще и в таком виде:

Отметим, что угловая скорость со измеряется в радианах в секунду, а частота - в оборотах в секунду. Размерности со и одинаковы так как эти величины различаются лишь числовым множителем

Задача

По кольцевой дороге. Рельсы игрушечной железной дороги образуют кольцо радиуса (рис. 47). Вагончик перемещается по ним, подталкиваемый стержнем который поворачивается с постоянной угловой скоростью вокруг точки лежащей внутри кольца почти у самых рельсов. Как изменяется скорость вагончика при его движении?

Рис. 47. К нахождению угловой скорости при движении по кольцевой дороге

Решение. Угол образуемый стержнем с некоторым направлением, изменяется со временем по линейному закону: . В качестве направления, от которого отсчитывается угол удобно взять диаметр окружности, проходящий через точку (рис. 47). Точка О - центр окружности. Очевидно, что центральный угол определяющий положение вагончика на окружности, в два раза больше вписанного угла опирающегося на ту же дугу: Поэтому угловая скорость со вагончика при движении по рельсам вдвое больше угловой скорости с которой поворачивается стержень:

Таким образом, угловая скорость со вагончика оказалась постоянной. Значит, вагончик движется по рельсам равномерно. Его линейная скорость неизменна и равна

Ускорение вагончика при таком равномерном движении по окружности всегда направлено к центру О, а его модуль дается выражением (4):

Посмотрите на формулу (4). Как ее следует понимать: ускорение все-таки пропорционально или обратно пропорционально ?

Объясните, почему при неравномерном движении по окружности угловая скорость со сохраняет свой смысл, а теряют смысл?

Угловая скорость как вектор. В некоторых случаях угловую скорость удобно рассматривать как вектор, модуль которого равен а неизменное направление перпендикулярно плоскости, в которой лежит окружность. С помощью такого вектора можно записать формулу, аналогичную (3), которая выражает вектор скорости частицы, движущейся по окружности.

Рис. 48. Вектор угловой скорости

Поместим начало отсчета в центр О окружности. Тогда при движении частицы ее радиус-вектор будет только поворачиваться с угловой скоростью со, а его модуль все время равен радиусу окружности (рис. 48). Видно, что вектор скорости направленный по касательной к окружности, можно представить как векторное произведение вектора угловой скорости со на радиус-вектор частицы:

Векторное произведение. По определению векторное произведение двух векторов представляет собой вектор, перпендикулярный плоскости, в которой лежат перемножаемые векторы. Выбор направления векторного произведения производится по следующему правилу. Первый сомножитель мысленно поворачивается в сторону второго, как если бы это была рукоятка гаечного ключа. Векторное произведение направлено в ту же сторону, куда при этом стал бы перемещаться винт с правой резьбой.

Если сомножители в векторном произведении поменять местами, то оно изменит направление на противоположное: Это значит, что векторное произведение некоммутативно.

Из рис. 48 видно, что формула (8) будет давать правильное направление для вектора если вектор со направлен именно так, как показано на этом рисунке. Поэтому можно сформулировать следующее правило: направление вектора угловой скорости совпадает с направлением движения винта с правой резьбой, головка которого поворачивается в ту же сторону, в которую движется частица по окружности.

По определению модуль векторного произведения равен произведению модулей перемножаемых векторов на синус угла а между ними:

В формуле (8) перемножаемые векторы со и перпендикулярны друг другу, поэтому как и должно быть в соответствии с формулой (3).

Что можно сказать о векторном произведении двух параллельных векторов?

Как направлен вектор угловой скорости стрелки часов? Чем различаются эти векторы для минутной и часовоой стрелок?

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное . С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (рис. 1) относительно прямолинейного и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (рис. 2).

Рис. 2. Разбиение криволинейного движения на участки прямолинейного движения

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (рис. 3). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. К тому же примеры движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного. Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории (рис. 4). Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рассмотрим движение тела по дуге окружности (рис. 5).

Рис. 5. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке равен модулю скорости тела в точке :

Однако вектор не равен вектору . Итак, у нас появляется вектор разности скоростей (рис. 6):

Рис. 6. Вектор разности скоростей

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

Это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что, даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется. Однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (рис. 7). Центростремительное ускорение всегда направлено к центру окружности, по которой движется тело.

Рис. 7. Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле:

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 8. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки и (рис. 8). Рассмотрим их движение. За некоторое время эти точки переместятся по дугам окружности и станут точками и . Очевидно, что точка совершила большее перемещение, чем точка . Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется

Однако если внимательно посмотреть на точки и , можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения . Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности можно использовать угловые характеристики.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. По аналогии можно дать определение равномерного движения по окружности.

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью равномерного движения ( называется физическая величина, равная отношению угла, на который повернулось тело, ко времени, за которое произошел этот поворот.

В физике чаще всего используется радианная мера угла. Например, угол в равен радиан. Измеряется угловая скорость в радианах в секунду:

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка проходит при вращении дугу длиной , поворачиваясь при этом на угол . Из определения радианной меры угла можно записать:

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей:

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Такая зависимость линейной и угловой скоростей используется в геостационарных спутниках (спутники, которые всегда находятся над одной и той же точкой земной поверхности). Благодаря таким спутникам мы имеем возможность получать телевизионные сигналы.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой и измеряется в секундах в СИ:

Частота вращения – физическая величина, равная количеству оборотов, которое тело совершает за единицу времени.

Частота обозначается буквой и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Подставляя эти выражения в зависимость между угловой и линейной скоростью, можно получить зависимость линейной скорости от периода или частоты:

Запишем также связь между центростремительным ускорением и этими величинами:

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности. Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным. Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения) и нашли соотношения между ними.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Аyp.ru ().
  2. Википедия ().

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 - сб. задач А.П. Рымкевич, изд. 10
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.

При описании движения точки по окружности мы будем характеризовать перемещение точки углом Δφ , который описывает радиус-вектор точки за время Δt . Угловое перемещение за бесконечно малый промежуток времени dt обозначается .

Угловое перемещение – величина векторная. Определяется направление вектора (или ) по правилу буравчика: если вращать буравчик (винт с правосторонней резьбой) в направлении движения точки, то буравчик будет двигаться в направлении вектора углового смещения. На рис. 14 точка М движется по часовой стрелке, если смотреть на плоскость движения снизу. Если крутить буравчик в этом направлении, то вектор будет направлен вверх.

Таким образом, направление вектора углового перемещения определяется выбором положительного направления вращения. Положительное направление вращения определяется правилом буравчика с правосторонней резьбой. Однако с таким же успехом можно было взять буравчик с левосторонней резьбой. В этом случае направление вектора углового смещения было бы противоположным.

При рассмотрении таких величин, как скорость, ускорение, вектор смещения не возникал вопрос о выборе их направления: оно определялось естественным образом из природы самих величин. Такие вектора называются полярными. Вектора, подобные вектору углового перемещения, называются аксиальными, или псевдовекторами . Направление аксиального вектора определяется выбором положительного направления вращения. Кроме того, аксиальный вектор не имеет точки приложения. Полярные векторы , которые мы рассматривали до сих пор, приложены к движущейся точке. Для аксиального вектора можно лишь указать направление (ось, axis – лат.), вдоль которой он направлен. Ось, вдоль которой направлен вектор углового смещения, перпендикулярна плоскости вращения. Обычно вектор углового перемещения изображают на оси, проходящей через центр окружности (рис. 14), хотя его можно нарисовать в любом месте, в том числе на оси, проходящей через рассматриваемую точку.

В системе СИ углы измеряются в радианах. Радиан – это такой угол, длина дуги которого равна радиусу окружности. Таким образом, полный угол (360 0) равен 2π радиан.

Движение точки по окружности

Угловая скорость – векторная величина, численно равная углу поворота за единицу времени. Обозначается обычно угловая скорость греческой буквой ω. По определению, угловая скорость – это производная угла по времени:

. (19)

Направление вектора угловой скорости совпадает с направлением вектора углового перемещения (рис. 14). Вектор угловой скорости, так же, как и вектор углового перемещения, является аксиальным вектором.


Размерность угловой скорости – рад/с.

Вращение с постоянной угловой скоростью называется равномерным, при этом ω = φ/t.

Равномерное вращение можно характеризовать периодом обращения Т, под которым понимают время, за которое тело делает один оборот, т. е. поворачивается на угол 2π. Поскольку промежутку времени Δt = Т соответствует угол поворота Δφ = 2π, то

(20)

Число оборотов в единицу времени ν, очевидно, равно:

(21)

Величина ν измеряется в герцах (Гц). Один герц – это один оборот в секунду, или 2π рад/с.

Понятия периода обращения и числа оборотов в единицу времени можно сохранить и для неравномерного вращения, понимая под мгновенным значением T то время, за которое тело совершило бы один оборот, если бы оно вращалось равномерно с данным мгновенным значением угловой скорости, а под ν понимая то число оборотов, которое совершало бы тело за единицу времени при аналогичных условиях.

Если угловая скорость меняется со временем, то вращение называется неравномерным. В этом случае вводят угловое ускорение аналогично тому, как для прямолинейного движения вводилось линейное ускорение. Угловое ускорение – это изменение угловой скорости за единицу времени, вычисляется как производная угловой скорости по времени или вторая производная углового смещения по времени:

(22)

Так же, как и угловая скорость, угловое ускорение является векторной величиной. Вектор углового ускорения – аксиальный вектор, в случае ускоренного вращения направлен в ту же сторону, что и вектор угловой скорости (рис. 14); в случае замедленного вращения вектор углового ускорения направлен противоположно вектору угловой скорости.

При равнопеременном вращательном движении имеют место соотношения, аналогичные формулам (10) и (11), описывающим равнопеременное прямолинейное движение:

ω = ω 0 ± εt,

.



Поделиться