Нелинейные колебания. Андрианов И., Данишевский В.В., Иванков А.О

НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ

Колебания в физич. системах, описываемые нелинейными системами обыкновенных дифференциальных уравнений

где содержит члены не ниже 2-й степени по компонентам вектора - вектор-функция времени - малый параметр (либо и ). Возможные обобщения связаны с рассмотрением разрывных систем, воздействий с разрывными характеристиками (напр., типа гистерезиса), запаздывания и случайных воздействий, интегро-дифференциальных и дифференциально-операторных уравнений, колебательных систем с распределенными параметрами, описываемыми дифференциальными уравнениями с частными производными, а также с использованием методов оптимального управления нелинейными колебательными системами. Основные общие задачи Н. к.: отыскание положений равновесия, стационарных режимов, в частности периодич. движений, автоколебаний и исследование их устойчивости, проблемы синхронизации и стабилизации Н. к.

Все физич. системы, строго говоря, являются нелинейными. Одна из наиболее характерных особенно--стей Н. к.- это нарушение в них принципа суперпозиции колебаний: результат каждого из воздействий в присутствии другого оказывается иным, чем в случае отсутствия другого воздействия.

Квазилинейные системы - системы (1) при . Основным методом исследования является малого параметра метод. Прежде всего это метод Пуанкаре - Линдштедта определения переодич. решений квазилинейных систем, аналитических по параметру при его достаточно малых значениях, либо в виде рядов по степеням (см. гл. IX), либо в виде рядов по степеням и - добавок к начальным значениям компонент вектора (см. гл. III). О дальнейшем развитии этого метода см., напр., в - .

Другим из методов малого параметра является метод осреднения. Вместе с тем в исследование квазилинейных систем проникали и новые методы: асимптотич. методы (см. , ), метод К-функций (см. ), базирующийся на фундаментальных результатах А. М. Ляпунова - Н. Г. Четаева, и др.

Существенно нелинейные системы, в к-рых отсутствует заранее предписываемый малый параметр . Для систем Ляпунова

причем среди собственных чисел -матрицы нет кратных корню - аналитич. вектор-функция х, разложение к-рой начинается с членов не ниже 2-го порядка, и имеет место аналитический специального вида, А. М. Ляпунов (см. § 42) предложил метод отыскания периодич. решений в виде ряда по степеням произвольной постоянной с(за к-рую может быть принято начальное значение одной из двух крнтич. переменных либо ).

Для систем, близких к системам Ляпунова,

где того же вида, что и в (2), - аналитич. вектор-функция и малого параметра , непрерывная и -периодическая по t, также предложен метод определения периодич. решений (см. гл. VIII). Системы типа Ляпунова (2), в к-рых имеет lнулевых собственных значений с простыми элементарными делителями, два - чисто мнимых собственных значения и не имеет собственных значений, кратных - такая же, как и в (2), могут быть сведены к системам Ляпунова (см. IV.2). Исследовались также Н. к. в системах Ляпунова и в т. н. системах Ляпунова с демпфированием, а также решалась общая задача о перекачке энергии в них (см. гл. I, III, IV).

Пусть существенно нелинейная приведена к жорданову виду ее линейной части

где вектор по предположению имеет хотя бы одну ненулевую компоненту; , равны нулю или единице соответственно при отсутствии пли наличии непростых элементарных делителей матрицы линейной части,- коэффициенты; значений вектора с целочисленными компонентамп таково:

Тогда существует нормализующее преобразование:

приводящее (3) к нормальной форме дифференциальных уравнений

и такое, что , если . Таким образом, (5) содержит лишь , т. е. коэффициенты могут быть отличны от нуля лишь для тех , для к-рых выполнено резонансное уравнение

играющее существенную роль в теории колебаний. Сходимость и расходимость нормализующего преобразования (4) исследована (см. ч. I, гл. II, III); дано вычисление коэффициентов (посредством их симметризации) (см. § 5.3). В ряде задач о Н. к. существенно нелинейных автономных систем оказался эффективным метод нормальных форм (см. , гл. VI-VIII).

Из других методов исследования существенно нелинейных систем применяются метод точечных отображений (см. , ), стробосконич. метод и функционально-аналитич. методы .

Качественные методы Н. к. Исходными здесь являются исследования вида интегральных кривых нелинейных обыкновенных дифференциальных уравнений, проведенные А. Пуанкаре (Н. Poincare, см. ). Приложения для задач Н. к., описываемых автономными системами 2-го порядка см. в , . Изучены вопросы существования периодич. решений и их устойчивости в большом для многомерных систем; рассмотрены почти периодические Н. к. Приложения теории обыкновенных дифференциальных уравнений с малым параметром при нек-рых производных к задачам релаксационных Н. к. см. в .

Важные аспекты Н. к. и лит. см. в статьях Возмущений , Колебаний теория.

Лит. : Пуанкаре А., Избр. труды, пер. с франц., т. 1, М., 1971; Андронов А. А., Витт А. А., Xайкин С. Э., Теория колебаний, 2 изд., М., 1959; Булгаков Б. В., Колебания, М., 1954; Малкин И. Г., Некоторые задачи теории нелинейных колебаний, М., 1956: Боголюбов Н. Н., Избр. труды, т. 1, К., 1969; [б] Боголюбов Н. Н., Митропольский Ю. А., Асимптотические методы в теории нелинейных колебаний, 4 изд., М-, 1974; Каменков Г. В., Избр. труды, т. 1-2, М., 1971-72; Ляпунов А. М., Собр. соч., т. 2, М.- Л., 195В, с. 7-263; Старжинский В. М., Прикладные методы нелинейных колебаний, М., 1977; Брюно А. Д., "Тр. Моск. матем. об-ва", 1971, т. 25, с. 119-262; 1972, т. 26, с. 199-239; Неймарк Ю. И., Метод точечных отображений в теории нелинейных колебаний, М., 1972; Мinorsky N., Introduction to non-linear mechanics, Ann Arbor, 1947; Красносельский М. А., Бурд В. Ш., Колесов Ю. С, Нелинейные почти периодические колебания, М., 1970; Пуанкаре А., О кривых, определяемых дифференциальными уравнениями, пер. с франц., М. -Л., 1947; Бутенин Н. В., Неймарк Ю. И., Фуфаев Н. А., Введение в теорию нелинейных колебаний, М., 1976; Плисе В. А., Нелокальные проблемы теории колебаний, М. -Л., 1964; Мищенко Е. Ф., Розов Н. X., Дифференциальные уравнения с малым параметром и релаксационные колебания, М., 1975.

В. М. Старжинский.

Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ" в других словарях:

    нелинейные колебания - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN nonlinear oscillations … Справочник технического переводчика

    нелинейные колебания - netiesiniai virpesiai statusas T sritis fizika atitikmenys: angl. non linear oscillations; non linear vibrations vok. nichtlineare Schwingungen, f rus. нелинейные колебания, n pranc. oscillations non linéaires, f … Fizikos terminų žodynas

    Термин, который иногда употребляют, подразумевая колебания в нелинейных системах (См. Нелинейные системы) … Большая советская энциклопедия

    Нелинейные колебания Нелінійні коливання Специализация … Википедия

    Процессы в колебат. и волновых системах, не удовлетворяющие суперпозиции принципу. Нелинейные колебания или волны в общем случае взаимодействуют между собой, а их характеристики (частота, форма колебаний, скорость распространения, вид профиля… … Физическая энциклопедия

    Колебательные системы, св ва к рых зависят от происходящих в них процессов. Колебания таких систем описываются нелинейными ур ниями. Нелинейными явл.: механич. системы, где модули упругости тел зависят от деформаций последних или коэфф. трения… … Физическая энциклопедия

1. Использованная выше в линейном анализе гипотеза о бесконечно малой величине возмущений не позволяет рассмотреть развитие действительных возму­щений. В линейной теории, как видно, амплитуда возмущений либо вообще не определена (на границе устойчивости), либо растет беспредельно (в зоне неус­тойчивости), что получается как следствие ее исходных положений. На самом деле при некоторой амплитуде возмущений становятся существенными нелиней­ные эффекты, которые предотвращают бесконечное увеличение амплитуды и при­водят к предельному циклу колебаний.

Нелинейность начинает проявляться лишь для возмущений с определенной (критической) амплитудой: при меньшей амплитуде согласно нелинейной теории колебания затухают, при большей - имеет место так называемая нелинейная неустойчивость (неустойчивость в большом, импульсная неустойчивость). Нелиней­ности колебательного процесса в РДТТ определяются нелинейностью процесса горения и волнового движения в камере, проявляющегося в росте кривизны волн давления, дисперсии возмущений и в возникновении ударных волн.

Несмотря на то, что линейные теории обеспечивают довольно полное пони­мание проблемы неустойчивости РДТТ, они не могут решить чрезвычайно важ­ного для практики вопроса о наиболее опасных для двигателя и для всего ЛА колебаниях большой амплитуды. Поэтому изучению таких нелинейных колебаний уделяется все большее и большее внимание. В настоящее время можно указать узкий круг уже решенных нелинейных задач.

2. Исходные уравнения . Рассмотрим в следующей постановке зада­чу о нелинейных акустических колебаниях для одномерного течения. Система не­линейных дифференциальных уравнений для такого случая может быть представ­лена в следующем виде:

уравнение сохранения массы газа

уравнение сохранения массы частиц

; (5.85)

уравне­ние сохранения количества движения

; (5.86)

уравне­ние сохранения энергии

где индекс «l » означает массовый расход на единицу длины; v - на единицу объема; остальные индексы и величины прежние.

3. Основные допущения . Для решения этих уравнений сделаем сле­дующие допущения:

Отсутствует догорание, т. Е = 0; Q = 0;

Обмен энергией представлен теплообменом между частицами и газом в КС;

Сечение канала заряда неизменно, т. е. F = const;

При z = 0 скорости газа и частиц раины нулю;

Для двухфазного потока в сопле предполагается постоянное отставание тя­желой фракции;

Режим работы сопла квазистационарный;

Характеристики переходного горения определяются функцией чувствительно­сти в виде

. (5.88)

следовательно, характеристика горения предполагает линейность;

Учитывается связь скорости горения с давлением, в отдельных случаях - со скоростью потока;

Частицы рассматривают только одного размера, причем с использованием линейного и нелинейного коэффициента сопротивления.

4. Результаты численного решения . Численные методы решения нелинейных задач устойчивости включают метод характеристик, метод «дискре­тизации» и др. В последнем случае решение задачи аппроксимируется в предпо­ложении удовлетворения нелинейности в конечном числе дискретных точек. Сис­тема представленных уравнений (5.84) ... (5.87) может решаться, например, методом характеристик. Такое решение, полученное Ф. Куликом, дает зависимость амплитуды возмущений от времени. Примеры результатов численных расчетов Ф. Кулика показаны на рис.7. Начальные условия задавались в виде стоячей волны основной частоты камеры. Начальное возмущение составляло равную часть первой и второй моды, но после трех циклов давление почти не содержало второй гармоники. Влияние связи с переходным горением в этом случае, очевид­но, играет решающую роль; функция чувствительности при принятых А и В по­казывает это в сильной степени для основной частоты и в слабой - для второй моды. Можно отметить также, что амплитуда давления начинает возрастать не сразу; более того наблюдается даже некоторое ее затухание после одного цикла. Это можно объяснить тем, что скорость горения только после нескольких циклов достигает значения, соответствующего возникшим возмущениям давления.

Теория нелинейных колебаний начала активно применяться и развиваться в течение последних 50 лет. Основополагающее значение в указанной гипотезе, в частности в концепции автоматических вибраций, принадлежит российскому ученому. М. Ляпунову и его сторонникам, работы которых смогли доказать необходимость использования нелинейных методов в решении сложных задач.

Замечание 1

Теория нелинейных колебаний (или нелинейного механического перемещения частиц среды) направлена на исследование нестабильных колебательных движений, описываемых в физике в виде дифференциальных уравнений.

Данная сфера в механике предоставляет более точное представление о характеристиках вибрационных движений автоматических систем. В итоге линейные формулы получаются путем упрощения нелинейных. Поэтому рассмотрение подобных колебаний дает возможность сделать только определенные заключения о свойствах кратковременных движений, которые могут быть лишь приближенными. Несмотря на это, теория нелинейных вибраций включает важные сведения о систематических решениях, появляющихся за рамками стабильности стационарного состояния.  

Способы проявления нелинейных эффектов

Нелинейные процессы могут формироваться посредством разнообразных методов. Классический и наглядный пример - это нелинейная спираль, в которой возобновляющая сила непосредственно зависит от начального растяжения. В случае параллельной нелинейности (одинаковый итог при растяжении и сжатии) формула движения частиц любого пространства принимает вид:

$\chi + 2 \gamma \chi + \alpha \chi + \beta \chi^3 = f (t)$

Если на систему периодически воздействует внешняя сила, то в классической гипотезе полагают, что и конечный отклик станет цикличным. Резонанс нелинейного явления при малой частоте отклика заключается в его соответствии с плотностью элементов концепции. При постоянном перемещении вынуждающей силы возникает амплитуда соответствующих частот, в котором вероятны разные значения сдвига частиц.

Существуют и другие комплексные решения, такие, как супергармонические и субгармонические вибрации. Если обязывающая сила имеет целостный вид, то другие колебания становятся более высокими. Гипотеза нелинейного резонанса основывается на предположении, что систематическое влияние предполагает создание периодического отклика.

Самоформирующиеся колебания представляют собой иной важный класс нелинейных процессов. Это вибрационные движения, которые формируются в системах без цикличных внешних периодических сил или воздействий.

Парадигма гипотезы нелинейных колебаний

Теория нелинейных движений стала заменой закона электрических вибраций Ван дер Поля. Последняя была генетически взаимосвязана с созданием принципов гипотезы радиотехнического прибора – лампового распределителя. В таком генераторе, функционирующем с определенным «трением» (т.е. будучи неконсервативной концепцией), постепенно появляются незатухающие колебательные перемещения. Это значит, что система включает источник внутренней энергии (или в систему систематически поступает питание извне). Однако в данном аспекте речь не идет о принужденных вибрациях. Ламповое устройство самостоятельно генерирует цикличные самовозбуждающиеся колебания.

Такие процессы возникают и функционируют за счет универсальной конструкции генератора, включающего, кроме колебательного усилитель и контура, связанных с ударной линией обратной связи.

Оставляя нерешенным вопрос о парадигме указанной гипотезы Ван дер Поля, возможно примерно описать концепцию, которая наблюдалась в трудах Мандельштама, Андронова и их последователей в конце 20-х гг.

Замечание 2

В качестве первого и основного элемента в работах ученых выступают «символические обобщения» – математические уравнения, которые определяют и описывают универсальные научные закономерности. В современной физике – это в основном дифференциальные формулы.

Ван дер Поль, в первую очередь, следовал уравнениям, описывающим принцип работы простого лампового распределителя:

$\frac {d^2x}{dt^2} - \mu (1 – 2x^2) \frac {dx}{dt} = x = 0$

Здесь $x$ – общий параметр (в случае генератора – сила и энергия тока), $t$ – определённый период времени, а нелинейный элемент $\frac{x}{dt}$ демонстрирует работу электронной лампы.

Значимую роль в истории теории нелинейных вибраций сыграл так называемый способ припасовывания (позднее названный законом структурно-линейной аппроксимации).

Собственно, в начале 1927 года Мандельштам смог более тщательно проанализировать стабильность колебательных движений, получаемых по указанному принципу. Метод припасовывания и на сегодняшний день широко применяется в гипотезе нелинейных колебаний.

Идеология теории нелинейных процессов

Идеология рассматриваемой гипотезы, прежде всего, характеризует особенности автоколебаний.

Понятия этих явлений были введены Л.В. Андроновым в научных статьях 1928–1929 гг. Фактически с механическими вибрациями имел дело и Ван дер Поль, описывая колебательные движения в ламповом генераторе, но он не так и не смог представить специального термина для них.

В работах Андронова «символическим обобщением» в итоге стало дифференциальное уравнение, по отношению к которому формула Ван дер Поля представляет собой только частный случай. Запись подобной эквивалентности выглядит следующим образом:

$\frac {d^2x}{dt^2} + \frac { 2dx}{dt + \omega^2 x} = f (\frac {x,dx}{dt})$

Идеология появляется вместе с парадигмой, но она распространяется значительно дальше. Идеологические процессы – это выражения и слова, значения которых определяются посредством аналогий, примеров и иллюстраций. Одним из главных признаков использования термина в идеологии является некое размывание его сути. Понятие условно выходит за границы собственной сферы применения.

До сих пор, рассматривая разного типа неустойчивости, мы ограничивали себя только режимами малых амплитуд, когда благодаря возможности линеаризации, сильно упрощается запись и решение дисперсионных уравнений. На самом деле в существующих на практике электронных устройствах в процессе нарастания колебаний, как правило, процессы становятся существенно нелинейными. В качестве немногочисленных исключений можно указать, пожалуй, очень короткоимпульсные или очень короткие вдоль электронного потока электронно-пучковые системы, где колебания не успевают перейти в нелинейную стадию.

Рассматривая особенности нелинейных колебаний, сначала, обратимся к простейшим уравнениям. Вспомним, что линейные колебания автономной одномерной системы без потерь описываются уравнением

Это простейшее уравнение преобразуется к виду, характерному для нелинейных колебаний, если второй член в левой части равенства - нелинейная функция f (x )

(10.5)

Простейший пример нелинейных колебаний - колебания электрона с большой амплитудой в периодическом поле типа показанного на рис.10.1. Такая ситуация реализуется в поле бегущей волны, которая может возникнуть, например, в ЛБВ или ЛОВ .

В
системе координат, движущейся с волной, изменение потенциальной энергии электрона описывается

уравнением

(10.6)

Поэтому уравнение движения электрона может быть записано в виде

так как
и
.

Таким образом, в типичной для СВЧ устройств ситуации движение электрона описывается принципиально нелинейным уравнением. Однако в данном случае проявляется одно из свойств нелинейных систем - их неизохронность , т.е. зависимость их состояния от начальной энергии колеблющейся частицы. Если начальная колебательная энергия электрона мала, он совершает колебательные движения с малой амплитудой вблизи минимума потенциала. В этом случае его движение - практически гармоническое. Если же начальная энергия велика и сравнима с глубиной потенциальной ямы, то амплитуда колебаний тоже велика и в результате движение одновременно становится существенно нелинейным.

Другой отличительной чертой нелинейных колебаний является их негармоничность. Негармоничность нелинейных колебательных поясним подробнее на другом примере.

Пусть мы имеем дело с электронным пучком, распространяющимся вдоль оси x , т.е. движение электронов одномерно. Введем начальную малую по амплитуде модуляцию скорости электронов

, (10.8)

т.е. теперь полная скорость электронов V равна сумме V=V o +u

Введение этого возмущения приводит к тому, что в пучке начнется группировка электронов. Обратим внимание, что рассматриваемая ситуация близка к реализуемой в клистроне, где в резонаторе происходит модуляция по скорости, а в пространстве дрейфа модуляция по скорости преобразуется в модуляцию по плотности.

Рассмотрим эволюцию пучка во времени в системе координат, движущейся с начальной скоростью электронов V o . В этой системе движение обусловлено только начальным возмущением и уравнение движения можно записать в форме

(10.9)

Равенство нулю полной производной возмущения скорости означает, что мы пренебрегаем возникновением электрических сил из-за группировки электронов и ведем рассмотрение без магнитного поля. Конечно, пренебрежение электрическими силами оправдано только на начальной стадии группировки. Затем электрическими полями сгустков уже пренебрегать будет нельзя. Именно эти поля будут ограничивать группировку. Таким образом, мы более-менее корректно можем анализировать только начальный этап эволюции группировки в пучке электронов. Пренебречь действием магнитного поля можно и в том случае, когда оно существует, но ориентировано в направлении движения электронов. При этом однако важно, чтобы электроны не имели поперечных по отношению к силовым линиям магнитного поля скоростей.

Проследим эволюцию характеристик электронного потока, воспользовавшись фазовой плоскостью x,u (рис.10.2). Рассмотрим для начала случай, когда в среде нет дисперсии. В фазовой плоскости каждая точка движется со своей скоростью. Точки верхней полуплоскости движутся вправо, а нижней - влево, причем скорость каждой точки пропорциональна удалению от оси х . Начальное состояние изображено синусоидой (тонкая линия на рисунке 10.2a). Затем синусоида искажается (толстая линия на том же рисунке) и в результате группировки электронов формируются максимумы плотности пространственного заряда вблизи точек, где величина u =0 (рис.10.2b). Одновременно изменение по х скоростей становится негармоническим и формируются сгустки пространственного заряда. Далее появляются точки, где производная стремится к бесконечности, а следовательно и концентрация электронов стремится к бесконечности.

Затем происходит “опрокидывание волны” (кривая на рис.10.2с). После этого уже существуют пары точек с бесконечной производной и с бесконечной концентрацией электронов (рис.10.2d).

Дальнейшая эволюция пучка ведет к тому, что сингулярные максимумы расходятся (левые идут налево, а правые в противоположном направлении.

Проведенное рассмотрение поясняет группировку электронов в клистроне и ярко иллюстрирует еще одну важную особенность нелинейных систем - их негармоничность . Действительно, распределение скоростей и плотности пространственного заряда в пучке описывались гармоническими функциями только в начальный момент. Далее все

характеристики становятся существенно негармоническими. Это же рассмотрение поясняет условия оптимальной группировки. Такие условия реализуются перед началом опрокидывания волны.

Колебания в физич. системах, описываемые нелинейными системами обыкновенных дифференциальных уравнений

где содержит члены не ниже 2-й степени по компонентам вектора - вектор-функция времени - малый параметр (либо и ). Возможные обобщения связаны с рассмотрением разрывных систем, воздействий с разрывными характеристиками (напр., типа гистерезиса), запаздывания и случайных воздействий, интегро-дифференциальных и дифференциально-операторных уравнений, колебательных систем с распределенными параметрами, описываемыми дифференциальными уравнениями с частными производными, а также с использованием методов оптимального управления нелинейными колебательными системами. Основные общие задачи Н. к.: отыскание положений равновесия, стационарных режимов, в частности периодич. движений, автоколебаний и исследование их устойчивости, проблемы синхронизации и стабилизации Н. к.

Все физич. системы, строго говоря, являются нелинейными. Одна из наиболее характерных особенно--стей Н. к.- это нарушение в них принципа суперпозиции колебаний: результат каждого из воздействий в присутствии другого оказывается иным, чем в случае отсутствия другого воздействия.

Квазилинейные системы - системы (1) при . Основным методом исследования является малого параметра метод. Прежде всего это метод Пуанкаре - Линдштедта определения переодич. решений квазилинейных систем, аналитических по параметру при его достаточно малых значениях, либо в виде рядов по степеням (см. гл. IX), либо в виде рядов по степеням и - добавок к начальным значениям компонент вектора (см. гл. III). О дальнейшем развитии этого метода см., напр., в - .

Другим из методов малого параметра является метод осреднения. Вместе с тем в исследование квазилинейных систем проникали и новые методы: асимптотич. методы (см. , ), метод К-функций (см. ), базирующийся на фундаментальных результатах А. М. Ляпунова - Н. Г. Четаева, и др.

Существенно нелинейные системы, в к-рых отсутствует заранее предписываемый малый параметр . Для систем Ляпунова

причем среди собственных чисел -матрицы нет кратных корню - аналитич. вектор-функция х, разложение к-рой начинается с членов не ниже 2-го порядка, и имеет место аналитический первый интеграл специального вида, А. М. Ляпунов (см. § 42) предложил метод отыскания периодич. решений в виде ряда по степеням произвольной постоянной с(за к-рую может быть принято начальное значение одной из двух крнтич. переменных либо ).

Для систем, близких к системам Ляпунова,

где того же вида, что и в (2), - аналитич. вектор-функция и малого параметра , непрерывная и -периодическая по t, также предложен метод определения периодич. решений (см. гл. VIII). Системы типа Ляпунова (2), в к-рых матрица имеет lнулевых собственных значений с простыми элементарными делителями, два - чисто мнимых собственных значения и не имеет собственных значений, кратных - такая же, как и в (2), могут быть сведены к системам Ляпунова (см. IV.2). Исследовались также Н. к. в системах Ляпунова и в т. н. системах Ляпунова с демпфированием, а также решалась общая задача о перекачке энергии в них (см. гл. I, III, IV).

Пусть существенно нелинейная автономная система приведена к жорданову виду ее линейной части

где вектор по предположению имеет хотя бы одну ненулевую компоненту; , равны нулю или единице соответственно при отсутствии пли наличии непростых элементарных делителей матрицы линейной части,- коэффициенты; множество значений вектора с целочисленными компонентамп таково:

Тогда существует нормализующее преобразование:

приводящее (3) к нормальной форме дифференциальных уравнений

и такое, что , если . Таким образом, нормальная форма (5) содержит лишь резонансные члены, т. е. коэффициенты могут быть отличны от нуля лишь для тех , для к-рых выполнено резонансное уравнение

играющее существенную роль в теории колебаний. Сходимость и расходимость нормализующего преобразования (4) исследована (см. ч. I, гл. II, III); дано вычисление коэффициентов (посредством их симметризации) (см. § 5.3). В ряде задач о Н. к. существенно нелинейных автономных систем оказался эффективным метод нормальных форм (см. , гл. VI-VIII).

Из других методов исследования существенно нелинейных систем применяются метод точечных отображений (см. , ), стробосконич. метод и функционально-аналитич. методы .

Качественные методы Н. к. Исходными здесь являются исследования вида интегральных кривых нелинейных обыкновенных дифференциальных уравнений, проведенные А. Пуанкаре (Н. Poincare, см. ). Приложения для задач Н. к., описываемых автономными системами 2-го порядка см. в , . Изучены вопросы существования периодич. решений и их устойчивости в большом для многомерных систем; рассмотрены почти периодические Н. к. Приложения теории обыкновенных дифференциальных уравнений с малым параметром при нек-рых производных к задачам релаксационных Н. к. см. в .

Важные аспекты Н. к. и лит. см. в статьях Возмущений теория, Колебаний теория.

Лит. : Пуанкаре А., Избр. труды, пер. с франц., т. 1, М., 1971; Андронов А. А., Витт А. А., Xайкин С. Э., Теория колебаний, 2 изд., М., 1959; Булгаков Б. В., Колебания, М., 1954; Малкин И. Г., Некоторые задачи теории нелинейных колебаний, М., 1956: Боголюбов Н. Н., Избр. труды, т. 1, К., 1969; [б] Боголюбов Н. Н., Митропольский Ю. А., Асимптотические методы в теории нелинейных колебаний, 4 изд., М-, 1974; Каменков Г. В., Избр. труды, т. 1-2, М., 1971-72; Ляпунов А. М., Собр. соч., т. 2, М.- Л., 195В, с. 7-263; Старжинский В. М., Прикладные методы нелинейных колебаний, М., 1977; Брюно А. Д., "Тр. Моск. матем. об-ва", 1971, т. 25, с. 119-262; 1972, т. 26, с. 199-239; Неймарк Ю. И., Метод точечных отображений в теории нелинейных колебаний, М., 1972; Мinorsky N., Introduction to non-linear mechanics, Ann Arbor, 1947; Красносельский М. А., Бурд В. Ш., Колесов Ю. С, Нелинейные почти периодические колебания, М., 1970; Пуанкаре А., О кривых, определяемых дифференциальными уравнениями, пер. с франц., М. -Л., 1947; Бутенин Н. В., Неймарк Ю. И., Фуфаев Н. А., Введение в теорию нелинейных колебаний, М., 1976; Плисе В. А., Нелокальные проблемы теории колебаний, М. -Л., 1964; Мищенко Е. Ф., Розов Н. X., Дифференциальные уравнения с малым параметром и релаксационные колебания, М., 1975.

  • - движения или процессы, обладающие той или иной степенью повторяемости во времени...

    Физическая энциклопедия

  • - тензорные коэффициенты, связывающие нелинейную часть поляризации Р = Р л + Р нл единичного объёма среды, возникающую под действием сильных электрических полей, с величинами...

    Физическая энциклопедия

  • - изменения сигнала S вых, приводящие к искажению передаваемого сообщения S вх, обусловленные нелинейностью оператора тракта передачи L: S вых = LS вх...

    Физическая энциклопедия

  • - процессы в колебат. и волновых системах, не удовлетворяющие суперпозиции принципу...

    Физическая энциклопедия

  • - колебательные системы, св-ва к-рых зависят от происходящих в них процессов. Колебания таких систем описываются нелинейными ур-ниями. Нелинейными явл.: механич...

    Физическая энциклопедия

  • - ур-ния, не обладающие свойством линейности...

    Физическая энциклопедия

  • - возникают в результате взаимодействия волн, полей и частиц, при к-рых не выполняется принцип суперпозиции волн и к-рые описываются с учётом нелинейных слагаемых в ур-ниях кинетики или...

    Физическая энциклопедия

  • - нелинейные оптич...

    Физическая энциклопедия

  • - колебат. и волновые системы, свойства к-рых зависят от происходящих в них процессов; описываются нелинейными диффсренц. ур-ниями. Одна из наиб. характерных особенностей Н.с.- нарушение принципа суперпозиции...

    Естествознание. Энциклопедический словарь

  • - системы, свойства и характеристики которых зависят от их состояния. Среди них могут быть механические и электрические колебательные системы, описываемые нелинейными дифференциальными уравнениями...

    Начала современного Естествознания

  • - движения или процессы, обладающие той или иной степенью повторяемости во времени - трептения - kmitání; kmity - Schwingungen - rezgés - хэлбэлзэл - wahania; drgania - oscilaţii - oscilacije - oscilaciones - oscillations; vibrations - oscillations...

    Строительный словарь

  • - Статьиволокно...

    Энциклопедический словарь нанотехнологий

  • - термин, который иногда употребляют, подразумевая колебания в нелинейных системах...
  • - Колебательные системы, свойства которых зависят от происходящих в них процессов...

    Большая Советская энциклопедия

  • «КОЛЕБАНИЯ» ОПРЕДЕЛЕНИЙ

    Из книги Как говорить правильно: Заметки о культуре русской речи автора Головин Борис Николаевич

    «КОЛЕБАНИЯ» ОПРЕДЕЛЕНИЙ На уроке учащимся было задано упражнение: ввести определение в словосочетание пять рабочих. Ученики быстро предложили свои примеры: пять молодых рабочих, пять старых рабочих, пять квалифицированных рабочих... Затруднений никаких не возникло.

    § 1 Экономические колебания

    Из книги Основы экономики автора Борисов Евгений Филиппович

    § 1 Экономические колебания При поиске истины мы наталкиваемся на парадокс (неожиданное явление, не соответствующее обычным представлениям).Как выглядит волнообразное движение экономикиЧтобы убедиться в том, что происходит в действительности, давайте посмотрим на

    Китайгородский Александр Исаакович

    V. Колебания Равновесие В некоторых случаях равновесие очень трудно поддержать – попробуйте пройтись по натянутому канату. В то же время никто не награждает аплодисментами сидящего в кресле-качалке. А ведь он тоже поддерживает свое равновесие.В чем же разница в этих

    Колебания

    Из книги Курс русской истории (Лекции XXXIII-LXI) автора Ключевский Василий Осипович

    Колебания Отвечая на этот вопрос, мы переберем все наиболее видные явления нашей внутренней жизни. Они очень сложны, идут различными, часто пересекающимися и иногда встречными течениями. Но можно разглядеть их общий



Поделиться