Уксусный альдегид. Уксусный альдегид: свойства, получение, применение Ацетальдегид вступает в реакции с

УКСУСНЫЙ АЛЬДЕГИД (ацетальдегид, этаналь ) - алифатический альдегид, CH 3 CHO; метаболит, образующийся при спиртовом брожении, окислении этилового спирта, в т. ч. в организме человека, и в других обменных реакциях. У. а. используют при получении различных лекарственных средств (см.), уксусной кислоты (см.), надуксусной к-ты CH 3 COOOH, уксусного ангидрида (CH 3 CO) 2 O, этилацетата, а также в производстве синтетических смол и др. На соответствующих производствах представляет собой профессиональную вредность.

У. а. представляет собой бесцветную жидкость с резким запахом, t° пл -123,5°, t° кип 20,2°, его относительная плотность при 20° 0,783, коэффициент преломления при 20° 1,3316, концентрационные пределы взрываемости (КПВ) 3,97 - 57%. С водой, этиловым спиртом, эфиром и другими органическими растворителями У. а. смешивается в любых соотношениях.

У. а. вступает во все реакции, характерные для альдегидов (см.), в частности он окисляется до уксусной к-ты, претерпевает альдольную и кротоновую конденсации, образует уксусно-этиловый эфир по реакции Тищенко и характерные для альдегидов производные по карбонильной группе. В присутствии кислот У. а. полимеризуется до циклического кристаллического тетрамера метальдегида или жидкого паральдегида. В промышленном масштабе У. а. получают гидратацией ацетилена (см.) в присутствии катализаторов - солей ртути, окислением этилового спирта (см.) и наиболее экономичным способом - окислением этилена (см. Углеводороды) в присутствии палладиевого катализатора.

Качественное обнаружение У. а. основано на появлении синего окрашивания в результате взаимодействия У. а. с нитропруссидом натрия в присутствии аминов. Количественное определение состоит в получении какого-либо производного У. а. по карбонильной группе и его весового, объемного (см. Титриметрический анализ) или колориметрического определения (см. Колориметрия).

Образование У. а. как промежуточного продукта обмена веществ происходит как в растительных, так и в животных организмах. Первой стадией превращения этилового спирта в организме человека и животных является его окисление до У. а. в присутствии алкоголь-дегидрогеназы (см.). У. а. образуется также при декарбоксилировании (см.) пирувата (см. Пировиноградная кислота) при спиртовом брожении и при расщеплении треонина (см.) под действием треонин-альдолазы (КФ 4.1.2.5). В организме человека У. а. окисляется до уксусной к-ты гл. обр. в печени под действием НАД-зависимой альдегидоксидазы (КФ 1.2.3. 1), ацетальдегидооксидазы и ксантокиназы. У. а. участвует в биосинтезе треонина из глицина (см.). В наркол. практике применение те ту рама (см.) основано на способности этого препарата специфически блокировать ацетальдегид-оксидазу, что приводит к накоплению в крови У. а. и, как следствие, к сильной вегетативной реакции - расширению периферических сосудов, сердцебиению, головной боли, удушью, тошноте.

Уксусный альдегид как профессиональная вредность

При хрон. воздействии на человека невысоких концентраций паров У. а. отмечают преходящее раздражение слизистых оболочек верхних дыхательных путей и конъюнктивы. Пары У. а. во вдыхаемом воздухе в высоких концентрациях вызывают учащение пульса, повышенную потливость; признаки резкого раздражающего действия паров У. а. в этих случаях усиливаются (особенно ночью) и могут сочетаться с удушьем, сухим болезненным кашлем, головной болью. Последствием такого отравления бывают бронхит и пневмония.

Попадание на кожу жидкого У. а. может вызывать ее гиперемию и появление инфильтратов.

Первая помощь и неотложная терапия

При отравлении парами У. а. пострадавшего необходимо вывести на свежий воздух, обеспечить ингаляцию водяного пара с нашатырным спиртом, при показаниях - ингаляции увлажненного кислорода, сердечные средства, стимуляторы дыхания (лобелин, цитотон), настойка валерианы, препараты брома. При резком раздражении слизистых оболочек дыхательных путей - щелочные или масляные ингаляции. При болезненном кашле - кодеин, этил-морфина гидрохлорид (дионин), горчичники, банки. При раздражении конъюнктивы - обильное промывание глаз водой или изотоническим р-ром хлорида натрия. При отравлении через рот - немедленное промывание желудка водой с добавлением р-ра аммиака (нашатырного спирта), 3% р-ром гидрокарбоната натрия. Дальнейшее лечение - симптоматическое. При попадании У. а. на кожу - немедленное обмывание пораженного участка водой, но лучше 5% р-ром нашатырного спирта.

Пострадавший должен быть отстранен от работы с вредными веществами до выздоровления (см. Профессиональные болезни).

Меры профилактики интоксикаций У. а. заключаются в герметизации оборудования, безотказной работе вентиляции (см.), механизации и автоматизации работ по розливу и транспортировке У. а. Хранить У. а. необходимо в герметически закупоренных сосудах. На производствах и в лабораториях, связанных с контактом с У. а., должны неукоснительно соблюдаться меры личной гигиены, пользование специальной одеждой и обувью, защитными очками, универсальными респираторами.

Предельно допустимая концентрация паров У. а. в воздухе рабочей зоны 5 мг/м 3 .

Библиогр.: Вредные вещества в промышленности, под ред. Н. В. Лазарева и Э. Н. Левиной, т. 1, Л., 1976; Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза, М., 1981; Уайт А. и др. Основы биохимии, пер. с англ., т. 1-3, М., 1981,

А. Н. Климов, Д. В. Иоффе; Н. Г. Будковская (гиг.).,

Уксусный альдегид (другие названия: ацетальдегид, метилформальдегид, этаналь) - принадлежащее к классу альдегидов. Это вещество имеет важное значение для человека, оно встречается в кофе, хлебе, спелых фруктах и овощах. Синтезируется растениями. Встречается в природе и производится в больших количествах человеком. Формула уксусного альдегида: CH3-CHO.

Физические свойства

1. Уксусный альдегид - это жидкость без цвета, имеющая резкий неприятный запах.
2. Хорошо растворяется в эфире, спирте и воде.
3. составляет 44,05 грамм/моль.
4. Плотность равна 0,7 грамм/сантиметр³.

Термические свойства

1. Температура плавления равна -123 градусам.
2. Температура кипения составляет 20 градусов.
3. равна -39 градусам.
4. Температура самовоспламенения составляет 185 градусов.

Получение уксусного альдегида

1. Основной способ получения этого вещества заключается в (так называемый процесс Вакера). Так выглядит эта реакция:
2CH2 = C2H4 (этилен) + O2 (кислород) = 2CH3CHO (метилформальдегид)

2. Также уксусный альдегид можно получить посредством гидратации ацетилена в присутствии ртутных солей (так называемая реакция Кучерова). При этом получается фенол, который затем изомеризуется в альдегид.

3. Следующий метод был популярным до появления вышеописанного процесса. Выполнялся путем окисления или дегидрирования на серебряном или медном катализаторе.

Применение уксусного альдегида

Для получения каких веществ нужен уксусный альдегид? Уксусная кислота, бутадиен, альдегидные полимеры и некоторые другие органические вещества.
- Используется в качестве прекурсора (вещество, которое участвует в реакции, приводящей к созданию целевого вещества) к уксусной кислоте. Однако так применять рассматриваемое нами вещество вскоре перестали. Это произошло по той причине, что уксусную кислоту проще и дешевле производить из металона при помощи процессов Катива и Монсанто.
- Метилформальдегид - важный прекурсор к пентаэритролу, пиридиновым производным и кротоналдегиду.
- Получение смол в результате того, что мочевина и уксусный альдегид имеют способность конденсироваться.
- Получение этилидендиацетата, из которого в дальнейшем производят мономер поливинилацетат (винилацетат).

Табачная зависимость и уксусный альдегид

Данное вещество - это значительная часть табачного дыма. Недавно была проведена демонстрация, на которой было показано, что синергическая связь уксусной кислоты с никотином увеличивает проявление зависимости (особенно у лиц до тридцати лет).

Болезнь Альцгеймера и уксусный альдегид

Те люди, у которых нет генетического фактора конверсии метилформальдегида в уксусную кислоту, имеют высокий риск предрасположенности к такому заболеванию, как (или болезнь Альцгеймера), которая обычно возникает в старческом возрасте.

Алкоголь и метилформальдегид

Предположительно рассматриваемое нами вещество является канцерогеном для человека, так как на сегодняшний день существуют доказательства канцерогенности уксусного альдегида в различных экспериментах на животных. Кроме этого, метилформальдегид повреждает ДНК, вызывая тем самым несоразмерное с массой тела развитие мышечной системы, которое связано с нарушением обмена белка в организме. Было проведено исследование 800 алкоголиков, в результате которого ученые пришли к выводу, что у людей, подвергшихся воздействию уксусного альдегида, есть дефект в гене одного фермента - алкогольдегидрогеназы. По этой причине такие пациенты больше подвержены риску развития онкологического заболевания почек и верхней части печени.

Безопасность

Данное вещество токсично. Является загрязнителем атмосферы при курении или от выхлопов в автомобильных пробках.


Альдегиды
– органические вещества, молекулы которых содержат карбонильную группу С=O , соединенную с атомом водорода и углеводородным радикалом.
Общая формула альдегидов имеет вид:

В простейшем альдегиде – формальдегиде роль углеводородного радикала играет другой атом водорода:

Карбонильную группу, связанную с атомом водорода, часто называют альдегидной:

Кетоны – органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой .
В простейшем кетоне – ацетоне – карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного радикала, связного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль. Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. Поэтому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии - изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов

В молекуле альдегида или кетона вследствие большей электороотрицательности атома кислорода по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электронной плотности π -связи к кислороду:

Альдегиды и кетоны - полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов. Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах; высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства альдегидов и кетонов

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

1. Реакции восстановления .

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе. Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные спирты. Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона - пропанол-2.

Гидрирование альдегидов - реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

2. Реакции окисления . Альдегиды способны не только восстанавливаться, но и окисляться . При окислении альдегиды образуют карбоновые кислоты.

Окисление кислородом воздуха . Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

Окисление слабыми окислителями (аммиачный раствор оксида серебра).

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее тонкой ровной пленкой. Получается замечательное серебряное зеркало. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

3. Реакция полимеризации:

n СH 2 =O → (-CH 2 -O-) n параформ n=8-12

Получение альдегидов и кетонов

Применение альдегидов и кетонов

Формальдегид (метаналь, муравьиный альдегид) H 2 C=O:
а) для получение фенолформальдегидных смол;
б) получение мочевино-формальдегидных (карбамидных) смол;
в) полиоксиметиленовые полимеры;
г) синтез лекарственных средств (уротропин);
д) дезинфицирующее средство;
е) консервант биологических препаратов (благодаря способности свертывать белок).

Уксусный альдегид (этаналь, ацетальдегид) СН 3 СН=О:
а) производство уксусной кислоты;
б) органический синтез.

Ацетон СН 3 -СО-СН 3:
а) растворитель лаков, красок, ацетатов целлюлозы;
б) сырье для синтеза различных органических веществ.

АЦЕТАЛЬДЕГИД , уксусный альдегид , этаналь , СН 3 ·СНО, находится в винном спирте-сырце (образуется при окислении этилового алкоголя), а также в первых погонах, получающихся при ректификации древесного спирта. Прежде ацетальдегид получали окислением этилового спирта бихроматом, но теперь перешли к контактному способу: смесь паров этилового спирта и воздуха пропускается через нагретые металлы (катализаторы). Ацетальдегид, получающийся при разгонке древесного спирта, содержит около 4-5% различных примесей. Некоторое техническое значение имеет способ добывания ацетальдегида разложением молочной кислоты нагреванием ее. Все эти способы получения ацетальдегида постепенно теряют свое значение в связи с разработкой новых, каталитических методов получения ацетальдегида из ацетилена. В странах с развитой химической промышленностью (Германия) они получили преобладающее значение и дали возможность использования ацетальдегида в качестве исходного материала для получения других органических соединений: уксусной кислоты, альдоля и др. Основанием каталитического способа является реакция, открытая Кучеровым: ацетилен в присутствии солей окиси ртути присоединяет одну частицу воды и превращается в ацетальдегид - СН: СН + Н 2 О = СН 3 · СНО. Для получения ацетальдегида по немецкому патенту (химическая фабрика Грисгейм-Электрон в Франкфурте-на- Майне) в раствор окиси ртути в крепкой (45%) серной кислоте, нагретой не выше 50°, при сильном помешивании пропускается ацетилен; образующиеся при этом ацетальдегид и паральдегид периодически сливаются сифоном или отгоняются в вакууме. Наилучшим, однако, является способ, заявленный французским патентом 455370, по которому работает завод Консорциума электрической промышленности в Нюрнберге.

Там ацетилен пропускается в горячий слабый раствор (не выше 6%) серной кислоты, содержащий окись ртути; образующийся при этом ацетальдегид в течение хода процесса непрерывно перегоняется и сгущается в определенных приемниках. По способу Грисгейм-Электрон некоторая часть ртути, образующаяся в результате частичного восстановления окиси, теряется, т. к. находится в эмульгированном состоянии и не может быть регенерирована. Способ Консорциума в этом отношении представляет большое преимущество, т. к. здесь ртуть легко отделяется от раствора и затем электрохимическим путем превращается в окись. Выход почти количественный, и полученный ацетальдегид очень чист. Ацетальдегид - летучая, бесцветная жидкость, температура кипения 21°, удельный вес 0,7951. С водой смешивается в любом соотношении, из водных растворов выделяется после прибавления хлористого кальция. Из химических свойств ацетальдегида следующие имеют техническое значение:

1) Прибавление капли концентрированной серной кислоты вызывает полимеризацию с образованием паральдегида:

Реакция протекает с большим выделением тепла. Паральдегид - жидкость, кипящая при 124°, не обнаруживающая типичных альдегидных реакций. При нагревании с кислотами наступает деполимеризация, и получается обратно ацетальдегид. Кроме паральдегида, существует еще кристаллический полимер ацетальдегида - так называемый метальдегид, являющийся, вероятно, стереоизомером паральдегида.

2) В присутствии некоторых катализаторов (соляная кислота, хлористый цинк и особенно слабые щелочи) ацетальдегид превращается в альдоль . При действии крепких едких щелочей наступает образование альдегидной смолы.

3) При действии алкоголята алюминия ацетальдегид переходит в уксусноэтиловый эфир (реакция Тищенко): 2СН 3 ·СНО = СН 3 ·СОО·С 2 Н 5 . Этим процессом пользуются для получения этилацетата из ацетилена.

4) Особенно большое значение имеют реакции присоединения: а) ацетальдегид присоединяет атом кислорода, превращаясь при этом в уксусную кислоту: 2СН 3 ·СНО + О 2 = 2СН 3 ·СООН; окисление ускоряется, если к ацетальдегиду заранее прибавлено некоторое количество уксусной кислоты (Грисгейм-Электрон); наибольшее значение имеют каталитические способы окисления; катализаторами служат: окись-закись железа, пятиокись ванадия, окись урана и в особенности соединения марганца; б) присоединяя два атома водорода, ацетальдегид превращается в этиловый алкоголь: СН 3 ·СНО + Н 2 = СН 3 ·СН 2 ОН; реакция ведется в парообразном состоянии в присутствии катализатора (никель); в некоторых условиях синтетический этиловый спирт успешно конкурирует со спиртом, получаемым брожением; в) синильная кислота присоединяется к ацетальдегиду, образуя нитрил молочной кислоты: СН 3 ·СНО + HCN =СН 3 ·СН(ОН)CN, из которого омылением получается молочная кислота.

Эти многообразные превращения делают ацетальдегид одним из важных продуктов химической промышленности. Дешевое его получение из ацетилена в последнее время позволило осуществить целый ряд новых синтетических производств, из которых способ производства уксусной кислоты является сильным конкурентом старому способу ее добывания путем сухой перегонки дерева. Кроме того, ацетальдегид находит применение как восстановитель в производстве зеркал и идет для приготовления хинальдина - вещества, применяемого для получения красок: хинолиновой желтой и красной и др.; кроме того, он служит для приготовления паральдегида, применяющегося в медицине в качестве снотворного средства.

ОПРЕДЕЛЕНИЕ

Альдегиды – органические вещества, относящиеся к классу карбонильных соединений, содержащих в своем составе функциональную группу –СН = О, которая называется карбонильной.

Общая формула предельных альдегидов и кетонов C n H 2 n O. В названии альдегидов присутствует суффикс –аль.

Простейшие представители альдегидов – формальдегид (муравьиный альдегид) –СН 2 = О, ацетальдегид (уксусный альдегид) – СН 3 -СН = О. Существуют циклические альдегиды, например, циклогексан-карбальдегид; ароматические альдегиды имеют тривиальные названия – бензальдегид, ванилин.

Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует 3σ-связи (две связи С-Н и одну связь С-О). π-связь образована р-электронами атомов углерода и кислорода. Двойная связь С = О является сочетанием σ- и π-связей. Электронная плотность смещена в сторону атома кислорода.

Для альдегидов характерна изомерия углеродного скелета, а также межклассовая изомерия с кетонами:

СН 3 -СН 2 -СН 2 -СН = О (бутаналь);

СН 3 -СН(СН 3)-СН = О (2-метилпентаналь);

СН 3 -С(СН 2 -СН 3) = О (метилэтилкетон).

Химические свойства альдегидов

В молекулах альдегидов имеется несколько реакционных центров: электрофильный центр (карбонильный атом углерода), участвующий в реакциях нуклеофильного присоединения; основный центр – атом кислорода с неподеленными электронными парами; α-СН кислотный центр, отвечающий за реакции конденсации; связь С-Н, разрывающаяся в реакциях окисления.

1. Реакции присоединения:

— воды с образованием гем-диолов

R-CH = O + H 2 O ↔ R-CH(OH)-OH;

— спиртов с образованием полуацеталей

CH 3 -CH = O + C 2 H 5 OH ↔CH 3 -CH(OH)-O-C 2 H 5 ;

— тиолов с образованием дитиоацеталей (в кислой среде)

CH 3 -CH = O + C 2 H 5 SH ↔ CH 3 -CH(SC 2 H 5)-SC 2 H 5 + H 2 O;

— гидросульфита натрия с образованием α-гидроксисульфонатов натрия

C 2 H 5 -CH = O + NaHSO 3 ↔ C 2 H 5 -CH(OH)-SO 3 Na;

— аминов с образованием N-замещенных иминов (основания Шиффа)

C 6 H 5 CH = O + H 2 NC 6 H 5 ↔ C 6 H 5 CH = NC 6 H 5 + H 2 O;

— гидразинов с образованием гидразонов

CH 3 -CH = O + 2 HN-NH 2 ↔ CH 3 -CH = N-NH 2 + H 2 O;

— циановодородной кислоты с образованием нитрилов

CH 3 -CH = O + HCN ↔ CH 3 -CH(N)-OH;

— восстановление. При взаимодействии альдегидов с водородом получаются первичные спирты:

R-CH = O + H 2 → R-CH 2 -OH;

2. Окисление

— реакция «серебряного зеркала» — окисление альдегидов аммиачным раствором оксида серебра

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓;

— окисление альдегидов гидроксидом меди (II), в результате которого выпадает осадок оксида меди (I) красного цвета

CH 3 -CH = O + 2Cu(OH) 2 → CH 3 -COOH + Cu 2 O↓ + 2H 2 O;

Эти реакции являются качественными реакциями на альдегиды.

Физические свойства альдегидов

Первый представитель гомологического ряда альдегидов – формальдегид (муравьиный альдегид) – газообразное вещество (н.у.), альдегиды неразветвленного строения и состава С 2 -С 12 – жидкости, С 13 и длиннее – твердые вещества. Чем больше атомов углерода входит в состав неразветвленного альдегида, тем выше его температура кипения. С увеличением молекулярной массы альдегидов увеличиваются значения величин их вязкости, плотности и показателя преломления. Формальдегид и ацетальдегид способны смешиваться с водой в неограниченных количествах, однако, с ростом углеводородной цепи эта способность альдегидов снижается. Низшие альдегиды обладают резким запахом.

Получение альдегидов

Основные способы получения альдегидов:

— гидроформилирование алкенов. Эта реакция заключается в присоединении СО и водорода к алкену в присутствии карбонилов некоторых металлов VIII группы, например, октакарбонилдикобальта (Cо 2 (СО) 8) Реакция проводится при нагревании до 130С и давлении 300 атм

СН 3 -СН = СН 2 + СО +Н 2 →СН 3 -СН 2 -СН 2 -СН = О + (СН 3) 2 СНСН = О;

— гидратация алкинов. Взаимодействие алкинов с водой происходит в присутствии солей ртути (II) и в кислой среде:

НС≡СН + Н 2 О → СН 3 -СН = О;

— окисление первичных спиртов (реакция протекает при нагревании)

СН 3 -СН 2 -ОН + CuO → CH 3 -CH = O + Cu + H 2 O.

Применение альдегидов

Альдегиды нашли широкое применение в качестве сырья для синтеза различных продуктов. Так, из формальдегида (крупнотоннажное производство) получают различные смолы (фенол-формальдегидные и т.д.), лекарственные препараты (уротропин); ацетальдегид — сырье для синтеза уксусной кислоты, этанола, различных производных пиридина и т.д. Многие альдегиды (масляный, коричный и др.) используют в качестве ингредиентов в парфюмерии.

Примеры решения задач

ПРИМЕР 1

Задание Бромированием С n H 2 n +2 получили 9,5 г монобромида, который при обработке разбавленным раствором NaOH превратился в кислородсодержащее соединение. Пары его с воздухом пропущены над раскаленной медной сеткой. При обработке образовавшегося при этом нового газообразного вещества избытком аммиачного раствора Ag 2 O выделилось 43,2 г осадка. Какой углеводород был взят и в каком количестве, если выход на стадии бромирования 50%, остальные реакции протекают количественно.
Решение Запишем уравнения всех протекающих реакций:

C n H 2n+2 + Br 2 = C n H 2n+1 Br + HBr;

C n H 2n+1 Br + NaOH = C n H 2n+1 OH + NaBr;

C n H 2n+1 OH → R-CH = O;

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓.

Осадок выделившийся в последней реакции – это серебро, следовательно, можно найти количество вещества выделившегося серебра:

M(Ag) = 108 г/моль;

v(Ag) = m/M = 43,2/108 = 0,4 моль.

По условию задачи, после пропускания вещества полученного в реакции 2 над раскаленной металлической сеткой образовался газ, а единственный газ –альдегид – это метаналь, следовательно, исходное вещество – это метан.

CH 4 + Br 2 = CH 3 Br + HBr.

Количество вещества бромметана:

v(CH 3 Br) = m/M = 9,5/95 = 0,1 моль.

Тогда, количество вещества метана, необходимое для 50% выхода бромметана – 0,2 моль. М(CH 4) = 16 г/моль. Следовательно масса и объем метана:

m(CH 4) = 0,2×16 = 3,2 г;

V(CH 4) = 0,2×22,4 = 4,48 л.

Ответ Масса метана — масса 3,2 г, объем метана-4,48 л

ПРИМЕР 2

Задание Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: бутен-1 → 1-бромбутан + NaOH → А – Н 2 → В + OH → С + HCl → D.
Решение Для получения 1-бромбутана из бутена-1 необходимо провести реакцию гидробромирования в присутствии пероксидных соединений R 2 O 2 (реакция протекает против правила Марковникова):

CH 3 -CH 2 -CH = CH 2 + HBr → CH 3 -CH 2 -CH 2 -CH 2 Br.

При взаимодействии с водным раствором щелочи 1-бромбутан подвергается гидролизу с образованием бутанола-1 (А):

CH 3 -CH 2 -CH 2 -CH 2 Br + NaOH → CH 3 -CH 2 -CH 2 -CH 2 OH + NaBr.

Бутанол-1 при дегидрировании образует альдегид – бутаналь (В):

CH 3 -CH 2 -CH 2 -CH 2 OH → CH 3 -CH 2 -CH 2 -CH = О.

Аммиачный раствор оксида серебра окисляет бутаналь до аммонийной соли – бутирата аммония (С):

CH 3 -CH 2 -CH 2 -CH = О + OH →CH 3 -CH 2 -CH 2 -COONH 4 + 3NH 3 + 2Ag↓ +H 2 O.

Бутират аммония при взаимодействии с соляной кислотой образует масляную (бутановую) кислоту (D):

CH 3 -CH 2 -CH 2 -COONH 4 + HCl → CH 3 -CH 2 -CH 2 -COOH + NH 4 Cl.



Поделиться