Движения Земли и их следствия. Отклоняющее действие вращения Земли

Действием поворотной силы инерции объясняется размывание правого берега рек северного полушария (закон Бара) Тем же объясняется большее снашивание правого рельса двухпутных железных дорог этого полушария.

Почожич, что поезд движется по меридиану в северном полушарии (рис. 123, а) Тогда скорость движения вдоль меридиана v можно разложить на две составляющие одна (г^) - параллельна земной оси, вторая (г>,) - пер­пендикулярна к ней Направление и величина компоненты скорости г>ц не будут изменяться вследствие вращения Земли, следовательно, эта компонента не свя­зана с силами инерции Со второй компонентой будет происходить то же самое,

что и со скоростью тела, двигающегося по радиусу вращающегося диска. Следо­вательно, на поезд будет действовать сила инерции

FK = 2тш1 = 2mm sin ф, (49 1)

где tn - масса поезда, а (р - широта Легко убедиться по чертежу (рис. 123, б), где пунктиром изображено направление компоненты через момент dt, что сила инерции всегда будет направлена в правую сторону по ходу поезда Поэтому со­вершенно очевидно, что преждевременный износ правого х) рельса можно заме­тить только на двухпутных железных дорогах, где движение по данной колее

Отметим, что поворотная сила инерции существует и тогда, когда поезд дви­жется и не по меридиану. В самом деле, и при движении по пара тели (рис. 124) будет иметь месго поворотное ускорение 2сои, направленное к оси вращения, если поезд движется на восток, и от оси вращения - при движении па запад. Следова­тельно, существует сила инерции

FK = 2mcoy, (49 2)

направленная от оси Земли (или к ее оси); проекция этой силы на горизонтальную плоскость равна

FK sin ф = 2mva sin ф, (49.3)

т. е. той же величине, что и при движении по меридиану, и направлена она также вправо по отношению к движению поезда.

То же следует сказать и о размытии берегов рек: размытие правого берега в северном полушарии (левого - в южном) имеет место независимо от направления течения реки

Читателю предлагается самостоятельно разобрать следующий вопрос: возникает ли поворотная сила инерции при движении поездов по местности вблизи экватора н сказывается ли там она на изнашивании рельса" (О т в е г. имеет место, но она не вызывает неравномерного изнашивания рельсов.)

На дорогах южного полушария - левого.

Если движение свободно падающего тела отнесено к системе отсчета, связан­ной с Землей, то во время падения тела на него действуют три силы, сила тяготе­ния и две силы инерции центробежная и поворотная Величина сил инерции при падении с небольшой высоты (по сравнению с радиусом Земли) будет невелика. Центробежное ускорение равно

(2~t)2 6400 Юз со2/? cos 242 363 10* C0S Ф М/,°2 "" cos Ф м/с2"

где и - угловая скорость вращения Земли, R - радиус Земли, ф - широта На экваторе центробежное ускорение составляет около 0,3% от ускоре­ния силы тяготения, поэтому при приближенном расчете влиянием измененияг)

Вид с полюса

центробежной силы с высотой падения можно пренебречь Гораздо более заметно влияние поворотной силы, которое вызовет отклонение падающего тела к востоку. Отклонение падающего тела к востоку можно просто представить себе" ведь тело в верхней точке из за вращения Земли имеет большую скорость (относительно невращающейся системы координат, связанной с центром Земли), чем то место, на которое оно падаег Отктонсние к востоку можно приближенно очень просто вычистить, полагая, что скорость падения тела <о в первом приближении направ­лена вниз и величина ее равна gt, как при падении на невращающейся Земле (t -» время падения)

Кориочнсова сила инерции равна -2т [<ог>], или приближенно величина ее соаавтяет 2тщ1 cos ф. Следовательно, ускорение к востоку падающего тела приближенно равно

a = 2tog^ cos ф. (49 5)

Проинтегрировав ускорение два раза, получим, что величина смещения падающего тела к востоку приближенно равна 3)

5=4" ЩР cos ф.

J) Заметим, что нам важно знать изменение центробежной силы по высоте, а не самую величину этой силы

t t t

2) s = | JK dt, где wK = ij a dt = 2a>g cos

При этом расчете мы полагали, что сила Кориолиса все время направлена к востоку, и пренебрегли изменением направления скорости v, а следовательно, и изменением направления поворотной силы Подставив числа, мы найдем, что при падении за 4 с на широте 45° (примерно с высоты 80 м) тело сместится к востоку примерно на 3 см Тщательные опыты, в, которых проверялись сме­щения к востоку, подтверждают результаты расчетов

Эти факты дают механическое доказательство вращения Земли. Они показывают, что система отсчета, связанная с Землей, - не- инерциальная система отсчета; только в тех случаях, когда силы, действующие на тело, значительно больше поворотной и центро­бежной сил инерции, можно приближенно считать систему отсчета, связанную с Землей, инерциальной.

Отметим, что центробежная сила инерции имеет определенное направление и величину в данном месте независимо от движения тела, поэтому она проявляется и фактически учитывается вместе с силой тяготения, действующей на тело. Наличие центробежной силы инерции вследствие вращения Земли ведет к тому, что сила тяготения тела и сила веса тела вообще различны они отличаются на величину центробежной силы инерции в данном месте (рис. 125,а).

Здесь шла речь только о суточном вращении Земли вокруг оси. Легко убедиться, что влияние сил инерции, возникающих вслед­ствие вращения Земли вокруг Солнца, будет несравненно меньше. Очевидно, что поворотная сила инерции будет примерно в 360 раз меньше, чем поворотная сила инерции вследствие суточного враще­ния Земли. Центробежная сила инерции вследствие вращения вокруг Солнца будет порядка 0,2 от центробежной силы вследствие суточ­ного вращения на экваторе.

При движении тел вблизи поверхности Земли силы инерции, связанные с вращением Земли вокруг Солнца, и силы притяже­

ния тел к Солнцу практически компенсируют друг друга и в боль­шинстве случаев могут вообще не учитываться. Чтобы показать это, запишем полное уравнение движения материальной точки массы т в околоземном пространстве. Примем за начало неинер­циальной системы отсчета центр массы Земли (рис. 125, б):

тМг> тМг „ „ _

mr^-y-^r-y-^R-mao + Ft + FM. (49.6)

Здесь в порядке следования записаны: сила притяжения материаль­ной точки т Землей; сила притяжения ее Солнцем; сила инерции, возникающая вследствие движения Земли вокруг Солнца по эллип­тической орбите; кориолисова сила инерции и центробежная сила инерции.

Ускорение а0= - y-w-Ro сообщается центру массы Земли

силой притяжения ее к Солнцу. Расстояние от Земли до Солнца R0 да 1,5-108 км.

Численное сравнение слагаемых, представляющих в уравнении (49.6) силу инерции, связанную с неравномерностью орбитального движения системы отсчета, и силу притяжения материальной точки Солнцем, показывает, что они с высокой точностью компенсируют друг друга. Поэтому их общий вклад в уравнение (49.6) можно считать равным нулю.

Действительно, = Ю~4, и R - R0-\-rp&R0. Отсюда

следует, что

Называя, как указано выше (см. рис. 125, а), сумму сил притяже­ния тела Землей и центробежной силы весом тела Р над данной точкой земной поверхности, уравнение (49.6) можно записать в сле­дующем виде:

mf=P+FK==mgr9-2m[(o©OTH], (49.7)

где gb - P/m. Уравнение (49.7) описывает движение тел в около­земном пространстве относительно системы отсчета, связанной с Землей.

Таким образом, только приближенно можно считать систему отсчета, связанную с Землей, инерциальной Ошибка, которая де­лается в этом случае, определяется отношением величин сил инер­ции к величине всех остальных сил, действующих на тело.

Французский ученый Фуко, наблюдая колебания маятника, доказал вра­щение Земчи (1852 г) Если представим, чго маятник подвешен на полкхе, то следует ожидать такую картину при колебаниях маятника плоскость его коле­

баний будет медленно поворачиваться в сторону, противоположную вращению Земли Это вращение плоскости колебаний видно, если наблюдать след котеба- ний маятника, подвешенного над вращающимся диском (рис. 126) Если мы заставим маятник котебаться в какой то пло­скости и затем приведем диск во вращение, то песок, высыпающийся из воронки маятника, которая подвешена вместо груза, покажет нам след движения маятника над диском

В неподвижной системе отсчета нет сил, которые заставили бы маятник изменить нло скость качания, и он будет сохранять ее неиз менной в пространстве, а диск (или Земля) по­ворачиваются под ним Очевидно, что плоскость колебаний маятника на полюсе будет вращаться с угловой скоростью вращения Земли (15° в час) Если же отнести колебания маятника на полюсе к системе координат, связанной с Землей, то вращение плоскости колебаний можно предста­вить себе как результат действия кориолисовой силы. Действительно, она перпендикулярна к скорости вращения и лежит все время в гори­зонтальной плоскости. Эта сила пропорциональ­на скорости движения i рузика маятника и угловой скорости вращения Земли и направлена так, что действие ее завора­чивает траекторию в нужную сторону

След движения маятника на Земле будет различен в зависимости от того, каким образом мы заставим маятник колебаться Проследим след траектории маятника над вращающимся диском (см рис 126) при двух способах запуска маятника Если отклоним грузик маятника в сторону и одновременно приве­дем диск во вращение так, что в момент пуска маятника вороночка получит такую же скорость, как и та точка диска, над которой она находится, след траек­тории будет представлять «звездочку» (рис 127, а) Таким же будет вид траекто­рии на земном полюсе, если маятник запускать из отклоненного положения

В другой раз мы заставим маятник колебаться при неподвижном диске, а зат^ I npii^jM диск во вращение В этом с 1учае траектория представ гяет собой «розетк\"> (рис 127, б) На Земле такая форма траектории будет в том случае, если маятник будет совершать колебания после резкого удара по

покоящемуся грузику. В обоих случаях траектории изгибаются в одну и ту же сторону под действием кориолисЬвой силы.

Таким образом, при колебаниях маятника на полюсе след траектории маят-" ника будет изгибаться и, следовательно, плоскость колебания будет постепенно поворачиваться под действием кориолисовой силы

которая лежит все время в горизонтальной плоскости и направлена всегда вправо по ходу грузика.

Опыт Фуко можно наблюдать и в аудитории, только следует сделать устрой­ство, которое отсчитывает поворот траектории за то время, пока колебания маятника не затухнут. Для опыта делают длину маятника как можно больше,

чтобы увеличить период его колеба­ний; тогда процесс колебаний займет большее время и Земля за это время переместится на больший угол.

Чтобы отметить угол поворота траектории при пуске, заставляют маятник колебаться в плоскости луча света, идущего от точечного источника на экран, так, что вначале на экране видна только четкая неподвижная ли­ния тени от нити подвески при коле­баниях. По прошествии некоторого времени (5-10 мин) плоскость колеба­ний повернется, и на экране будут вид­ны смещения тени от нити.

Для определения угла поворота плоскости колебаний маятника источ­ник света сдвигают в сторону до тех пор, пока опять не будет видна четкая неподвижная тень от нити. Измеряя смещение тени нити и расстояние от нити до экрана, находят угол, на который повернулась плоскость колебаний за данное время. Опыт показывает, что угловая скорость поворота плоскости колебаний маятника равна

со sin ф= 15 sin <р град/ч,

где ф - широта места (рис. 128). Вращение вокруг вертикали на широте ф будет происходить не с угловой скоростью со, а с угловой скоростью, равной проекции to вектора на вертикаль, т.е угловая скорость вращения будет равна со sin ф.

Уменьшение угловой скорости вращения плоскости колебаний можно объяс­нить также и тем, что проекция силы Кориолиса на горизонтальную плоскость в данном месте будет отличаться на коэффициент sin ф от ее величины на полюсе. Действительно, поворот плоскости качания вызовет только эта проекция. Сила Кориолиса, действующая на грузик маятника в данном месте, лежит в плоскости, перпендикулярной к <а и v, и пропорциональна синусу угла между ними. Только в том случае, когда вектор v лежит в плоскости меридиана, кориолисова сила направлена горизонтально; при всех других направлениях эта сила не лежит в горизонтальной плоскости.

Земной шар совершает сложное движение: вращается около своей оси, движется по орбите вокруг Солнца. Вполне понятно, что Земля не является инерциальной системой отсчета. Тем не менее мы с успехом пользуемся законом Ньютона в земных условиях. Однако в ряде случаев неинерциальность Земли сказывается достаточно резко. Эти случаи мы должны изучить.

Влияние вращения Земли на ее форму. Вес тела.

Если не учитывать вращения Земли, то тело, лежащее на ее поверхности, следует рассматривать как поколщееся.

Сумма действующих на это тело сил равнялась бы тогда нулю. На самом же деле любая точка поверхности земного шара, лежащая на географической широте движется около оси земного шара, т. е. по кругу радиуса радиус Земли, рассматриваемой в первом приближении в виде шара), с угловой скоростью Следовательно, сумма сил, действующих на такую точку, отлична от нуля, равна произведению массы на ускорение и направлена вдоль

Очевидно, что наличие такой результирующей силы (рис. 13)

возможно лишь в том случае, если реакция земной поверхности и сила тяготения направлены под углом друг к другу. Тогда тело будет давить на поверхность Земли (по третьему закону Ньютона) с силой Если бы земной шар покоился, то эта сила равнялась бы силе тяготения и совпадала бы с ней по направлению.

Разложим силу на две: направленную вдоль радиуса и по касательной Наличие вращения Земли приводит, как мы видим из чертежа, к двум фактам. Во-первых, вес (давление тела на Землю) стал меньше силы тяготения. Так как то это уменьшение равно Во-вторых, возникает сила, стремящаяся расплющить Землю, передвинуть вещество к экватору; эта сила Такое расплющивание действительно имело место; Земля имеет не форму шара, а форму, близкую к эллипсоиду вращения. Экваториальный радиус Земли становится в результате указанного действия примерно на долю больше полярного радиуса.

Расплющивающие силы заставляли перемещаться массы земного шара до тех пор, пока он не принял равновесной формы. Когда процесс смещения закончился, расплющивающие силы, очевидно, перестали действовать. Следовательно, силы давления, действующие на поверхность земного «шара», направлены по нормали к поверхности.

Возвратимся теперь к величине давления тела на землю, то есть к той физической величине, которую принято называть весом. Вычисление, сделанное для шара (сила тяготения минус разумеется, несправедливо для истинной фигуры Земли. Однако для приближенных вычислений этим результатом можно пользоваться.

На полюсе вес тела равен силе тяготения. Обозначим через силу тяготения тела на полюсе. Тогда давление тела на земную поверхность в любой точке земного шара, иначе говоря, вес тела, будет равно, как сказано выше, разности силы тяготения и силы т. е.

1

Байрашев К.А.

Получено точное решение задачи о влиянии вращения Земли на движение материальной точки в Северном полушарии без учета сопротивления воздуха при ненулевых начальных условиях. Рассмотрено несколько конкретных вариантов задания начальной скорости точки. Показано, что при начальной скорости, направленной на восток, отклонение точки на юг пропорционально первой степени угловой скорости вращения Земли. При начальной скорости, направленной на север или по отвесной линии вниз, отклонение точки на восток больше чем при падении без начальной скорости. Решение, полученное в работе, можно применить для оценки влияния вращения планет Солнечной системы на движение материальной точки вблизи их поверхностей.

1. Рассматривается задача о влиянии вращения Земли на падение тяжелой материальной точки в Северном полушарии, известная еще как задача об отклонении падающих тел на восток . Движение точки определяется относительно неинерциальной системы отсчета Оxyz , скрепленной с вращающейся Землей. Начало координат в общем случае располагается на некоторой высоте над сферической поверхностью Земли.

Ось Oz направлена по отвесу вниз, ось Оx - в плоскости меридиана к северу, ось Оy -по параллели к востоку (рис. 1).

При движении материальной точки вблизи поверхности Земли на нее действуют сила тяготения, переносная и кориолисова силы инерции. Сопротивление воздуха не учитывается. Заменяя сумму силы тяготения и переносной силы инерции силой тяжести , а кориолисову силу инерции формулой

Имеем следующее уравнение относительного движения материальной точки в векторной форме

(1)

Здесь m, и - соответственно масса, скорость и ускорение точки M, - вектор угловой скорости Земли, - ускорение силы тяжести.

Отметим, что скорость свободно падающей точки M , начинающей движении из состояния относительного покоя, почти параллельна отвесной линии. Поэтому корио-лисова сила инерции практически перпендикулярна плоскости меридиана и направлена на восток.

Проецируя (1) на координатные оси и следуя , получим систему обыкновенных дифференциальных уравнений 2-го порядка

(2)

где точки над x, y, z означают их производные по времени, φ - географическая широта места, т.е. угол отвесной линии с плоскостью экватора. Начальные условия следующие:

т.е. в начальный момент времени точка находится в относительном покое. В курсах теоретической механики обычно приводится приближенное решение задачи о влиянии вращения Земли на падение материальной точки без начальной скорости . В книге академика Н.А. Кильчевского дано точное решение системы уравнений, с точностью до знаков совпадающей с (2), при нулевых начальных условиях (3). В данной работе получено точное решение системы (2) при ненулевых начальных условиях (см. п. 4.). Предварительно решается задача (2) - (3) (см. п. 2.).

2. Интегрируя каждое из уравнений системы (2), находим

С учетом (3) получаем значения постоянных интегрирования: c 1 = c 2 = c 3 = 0.

Выражая из (4) через y и подставляя во второе уравнение системы (2), имеем

(5)

Дифференциальное уравнение (5) является линейным неоднородным. Следовательно, его решение

y = + Y,

где - общее решение однородного уравнения, Y - частное решение неоднородного уравнения . Корни характеристического уравнения

чисто мнимые Поэтому общее решение однородного уравнения

зависящее от двух постоянных интегрирования , можно записать в виде

Частное решение

где А и В неопределенные коэффициенты. Подставляя правую часть (6) в (5)

с учетом получим

Сокращая на 2ω и приравнивая друг к другу коэффициенты при первых степенях t и свободные члены, находим

Таким образом, а общее решение есть

Удовлетворяя начальному условию y 0 = 0, получаем c 1 * = 0. Условие дает

Следовательно,

(7)


Следует заметить, что в выражение для y содержит опечатку - во втором слагаемом коэффициент в знаменателе при ω 2 равен единице.

Подставляя правую часть (7) вместо у в первое и третье уравнения системы (4), интегрируя и удовлетворяя начальным условиям x 0 = z 0 = 0, получим

Ввиду того, что ориентация осей x и z противоположна принятой в , формулы (8)-(9) отличаются знаками от соответствующих формул, выведенных Н.А. Кильчевским.

Вычитая из (9) выражение (8) при будем иметь

Дифференцируя по времени получим

Опираясь на (8) легко доказать, что для движущейся точки Поэтому справедливо неравенство

(11)

Следовательно, при учете кориолисовой силы инерции вертикальная скорость падения точки меньше, чем без ее учета. Иначе говоря, неучет вращения Земли завышает вертикальную скорость падения точки по сравнению с действительной скоростью в пустоте. Этот вывод, представляющий только теоретический интерес, справедлив для всех φ из интервала Например, разница в расстояниях, пройденных точкой за 10с падения без учета и с учетом вращения Земли на широте φ=450 не превышает 5 . 10 -5 м , т.е. величина пренебрежимо малая.

3. Запишем решение задачи (2)-(3) в виде сходящихся рядов. Воспользуемся разложения

Подставляя правые части этих формул в (7)-(9), после преобразований получим

Полагая в (12) ω=0, имеем х=у=0, Этот же результат можно получить из (7)-(9) при ω→0.

,

Решение задачи (2), (13) можно получить способом, подробно изложенным в п. 2. В случае ненулевых начальных условий выкладки более громоздки, поэтому здесь они опускаются. Решение имеет вид

Подстановка в (2) соответствующих производных, полученных из (14) показывает, что каждое из уравнений системы обращается в тождество. Точно выполняются также начальные условия (13). Предполагается, что существует единственное решение задачи Коши для системы (2). Строго говоря, решение (14) должно хорошо согласовываться с опытными данными лишь в такой окрестности начальной точки M 0 (x 0 , y 0 , z 0 ) , где значения географической широты и ускорения силы тяжести мало отличаются от таковых в этой начальной точке. Чтобы расширить область решения, можно организовать зависящую от времени итерационную пошаговую процедуру, внося в (14) на очередном временнóм шаге поправки, учитывающие изменения φ , g и принимая за начальные условия соответствующие величины, рассчитанные на предыдущем шаге.

Нетрудно видеть, что при из (14) следуют равенства (7) - (9). Устремляя ω к нулю (ω →0), из (14) можно получить решение задачи при ненулевых начальных условиях без учета вращения Земли:

В этом случае траекторией точки является плоская кривая - парабола, поэтому обычно достаточно двух уравнений.

5. Рассмотрим еще шесть вариантов задания начальных условий, во всех из них для простоты полагаем x 0 = y 0 = z 0 = 0.

Вариант I. Пусть , т.е. начальная скорость направлена на восток. Тогда кориолисова сила инерции, действующая на точку в начальный момент времени, лежит в плоскости параллели и направлена от оси вращения Земли. Из (14), следуя подходу п. 3., оставляя явно только несколько первых членов рядов, получим

Точка отклоняется на восток и на юг (юго - восток).Формула (15) показывает, что отклонение траектории точки на юг пропорционально первой степени угловой скорости ω . Например, при t = 10c оно равно примерно 5 см. В отсутствии начальной скорости отклонение траектории точки на юг вследствие вращения Земли пропорционально квадрату угловой скорости. Этот известный результат следует из формулы для х системы (12).

Вариант II. Пусть , т.е. начальная скорость точки направлена на север, следовательно, кориолисова сила инерции, действующая на материальную точку при t=0, направлена на восток. Проведя такие же выкладки, как и в предыдущем случае будем иметь

Точка отклоняется на север и на восток (северо - восток). Из формулы (19) видно, что имеются два положительных слагаемых, пропорциональных первой степени угловой скорости ω, причем второе слагаемое появляется из - за начальной скорости, направленной на север. Следовательно, отклонение на восток больше, чем при падении точки в пустоте без начальной скорости. Такой вывод делается с учетом того, что угловая скорости вращения Земли малая по сравнению с единицей величина Поэтому членами, содержащими ω в степени выше второй при небольших t и υ 0 можно пренебречь.

Вариант III. Пусть , т.е. начальная скорость направлена по отвесу вниз. Кориолисова сила инерции за все время падения точки направлена на восток. Решение, полученное аналогично предыдущим двум вариантам, имеет вид

Из (21) видно, что отклонение точки на юг пренебрежимо малó. Формула (22) показывает, что как и в предыдущем варианте, отклонение точки на восток больше, чем при падении без начальной скорости.

Вариант IV. Пусть т.е. начальная скорость направлена на запад. Кориолисова сила инерции при t = 0 лежит в плоскости параллели и направлена к оси вращения Земли. Решение дается формулами (15 - 17) с учетом отрицательности знака . Если сумма первых двух слагаемых в (16) отрицательна, точка отклоняется в рассматриваемый момент времени на запад и на север (северо - запад), если положительна, то - на север и на восток (северо - восток). Чтобы последний случай имел место, необходимо свободное падение точки в течение сравнительно большого отрезка времени. Например, при g = 9,81 м/с точка должна падать более 77 с , т.е. с высоты более 29,1 км. Точка начинает падение в западном направлении, под действием кориолисовой силы инерции поворачивается вправо, пересекает плоскость меридиана и меняет направление на северо -восточное.

где знаки плюс и минус выбираются так же, как в (24) и (25).

Вариант V. Пусть т.е. начальная скорость направлена на юг. Кориолисова сила инерции при t=0 напралена на запад. Решение дается формулами (18) - (20) с учетом знака .

Вариант VI. Точка брошена вертикально вверх: . Кориолисова сила инерции при подъеме точки почти перпендикулярна плоскости меридиана и направлена на запад. В качестве решения можно использовать формулы (21) - (23), только нужно учитывать, что должны выполняться условия .

В этой работе предполагалось, как обычно принято, что точка расположена в Северном полушарии. Можно аналогично решить задачу о движении материальной точки в пустоте вблизи поверхности Земли в Южном полушарии.

Наконец, заметим, что формулы (14) -(23) можно применить для оценки влияния вращения планет Солнечной системы на движение материальной точки вблизи их поверхностей.

СПИСОК ЛИТЕРАТУРЫ

  1. Кильчевский Н.А. Курс теоретической механики, т. I (кинематика, статика, динамика точки). - 2-е изд. - М.: Наука, Главная редакция физико-математической литературы, 1977.
  2. Задачи и упражнения по математическому анализу. Под редакцией Демидовича Б.П. - М.: Наука, Главная редакция физико-математической литературы, 1978. - 480 с.

Библиографическая ссылка

Байрашев К.А. К ЗАДАЧЕ О ВЛИЯНИИ ВРАЩЕНИЯ ЗЕМЛИ НА ДВИЖЕНИЕ МАТЕРИАЛЬНОЙ ТОЧКИ // Фундаментальные исследования. – 2006. – № 10. – С. 9-15;
URL: http://fundamental-research.ru/ru/article/view?id=5388 (дата обращения: 15.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Министерство образования Российской Федерации. Государственное образовательное учреждение высшего профессионального образования

«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «МЕХАНИКА»

ДИНАМИКА ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ

Данное пособие входит в серию электронных учебных пособий по теоретической механике, разрабатываемых на кафедре механики СамГТУ.

Пособие предназначено для самостоятельного изучения студентами темы «Динамика относительного движения материальной точки».

Зав. кафедрой – д.т.н., проф. Я.М.Клебанов, Разработчики – Л.Б.Черняховская, Л.А.Шабанов.

Самара – 2008.

Переносное, относительное и абсолютное движение.

Рассмотрим движение точки М относительно двух систем отсчета, одна

из которых O 1 x 1 y 1 z 1 движется относительно другой, неподвижной,

отсчета Oxyz (рис.1).

Относительным

называется

движение

М относительно

подвижной системы отсчета O 1 x 1 y 1 z 1 .

Переносным

называется

движение,

совершаемое

подвижной

системой

неизменно

связанными

точками пространства относительно

неподвижной системы отсчета.

Абсолютным называется

движение точки по отношению x 1

к неподвижной системе отсчета O 1 x 1 y 1 z 1 .

Всем кинематическим характеристикам, относящимся к относительному движению, присваивается индекс r , кинематическим характеристикам переносного движения–индекс е.

Относительной скоростью V r называется скорость точки по отношению к подвижной системе отсчета.

Переносной скоростью V е называется скорость той точки, неизменно

связанной с подвижной системой отсчета, с которой в данный момент совпадает точка М , относительно неподвижной системы отсчета.

Абсолютная скорость V - это скорость точки относительно неподвижной системы отсчета. Аналогично определяются относительное

ускорение a r , переносное ускорение a e и абсолютное ускорение a .

Теорема о сложении скоростей. При сложном движении абсолютная скорость точки равна геометрической сумме переносной и относительной скоростей.

V = Ve + Vr

Теорема о сложении ускорений. При сложном движении ускорение точки равно геометрической сумме переносного, относительного ускорений и ускорения Кориолиса.

a = a e + a r + a c

Полученное равенство выражает теорему Кориолиса:

Ускорение Кориолиса равно удвоенному векторному произведению переносной угловой скорости и относительной скорости точки.

a c = 2 ω е × V r

Модуль ускорения Кориолиса равен

а С = 2ω e V r sinα ,

где α - угол между векторами ω е и V r .

Направление a c определяется в соответствии с общим правилом

векторного произведения.

Ускорение Кориолиса равно нулю в следующих случаях:

1) когда ω е = 0, т.е. когда переносное движение является

поступательным,

2) когда V r = 0 , т.е. в случае относительного покоя,

3) когда угол α = 0, т.е. в тех случаях, когда вектора ω е и V r

параллельны.

О сновной закон относительного движения материальной точки .

Рассмотрим движение материальной точки относительно неинерциальной системы координат, т.е. относительно системы координат, движущейся произвольным образом относительно неподвижной.

В случае сложного движения точки абсолютное ускорение определяется по теореме Кориолиса:

Умножим равенство (1) на массу движущейся материальной точки:

m a = m a e + m a r + m a k .

Выделим в подученном равенстве слагаемое, характеризующее относительное движение материальной точки

ma r = ma − ma e − ma с

ma =

Где

В соответствии со вторым законом Ньютона заменим

равнодействующая всех сил, приложенных к материальной точке.

Введем обозначения:

Ф e = − m a e ,

Ф с = − m a с .

m a r =

Ф e + Ф с

Вектор Ф e = − m a e называется переносной силой инерции, вектор Ф с = − m a с - силой инерции Кориолиса.

Равенство (2) представляет собой основной закон относительного движения материальной точки:

Относительно неинерциальной (подвижной) системы отсчета материальная точка движется так, как будто к ней, кроме действующей силы, приложены переносная сила инерции и сила инерции Кориолиса.

Векторы Ф e и Ф с можно рассматривать как поправки ко второму закону

Ньютона для материальной точки, движение которой рассматривается относительно неинерциальной системы отсчета.

Частные случаи.

1 . Пусть подвижная система отсчета по отношению к инерциальной системе движется поступательно. В этом случае угловая скорость

переносного движенияω е = 0 , следовательно, будут равняться нулю ускорение Кориолиса и сила инерции Кориолиса: a с = 2 ω e × V r = 0 ,

Ф с = −m a с = 0.

Закон относительного движения материальной точки (2) принимает вид: m a r = F + Ф e

2. Пусть подвижная система отсчета движется поступательно прямолинейно и равномерно. При таком дви ижении a e = 0 , следовательно,

Ф e = − m a e = 0 . Кроме того, ω е = 0 , a с = 0 , Ф с = − m a с = 0. Тогда равенство (2) принимает вид:

ma r = F

Следовательно, основной закон относительного движения точки в этом случае совпадает с основным законом движения точки по отношению к

инерциальной системе отсчета. Отсюда вытекает принцип относительности, открытый Галилеем:

Никаким механическим экспериментом нельзя обнаружить, находится ли данная система отсчета в покое или совершает поступательное, равномерное, прямолинейное движение по отношению к инерциальной (неподвижной) системе отсчета.

Таким образом, все системы отсчета, движущиеся поступательно, равномерно и прямолинейно относительно инерциальной системы, являются инерциальными.

3. Условие относительного равновесия. В этом случае

V r = 0 и

a r = 0 , следовательно, a с = 2

ω e × V r

Фс = − m a с

Тогда уравнение (2) принимает вид:

Ф e = 0

Это уравнение называется уравнением относительного равновесия материальной точки.

Влияние вращения Земли на равновесие тел.

Рассмотрим силы, действующие на материальную точку М, подвешенную на нити (рис.2) и находящуюся в покое относительно Земли.

На точку М действует сила притяжения F, направленная к центру Земли, сила натяжения нити Т и сила переносная инерции Ф e = − m a e , направленная в сторону, противоположную нормальному ускорению точки

a e n , которое в свою очередь направлено по

радиусу вращения ОМ = r к оси вращения Земли.

ae n = ω 2 OM = ω 2 r.

При равновесии точки на поверхности Земли геометрическая сумма приложенных к точке сил и переносной силы инерции равна нулю:

F + T + Фe = 0.

О М Ф е

ω F

С ψ ϕ m g

направление вертикали в данном пункте поверхности Земли, а плоскость,

перпендикулярная силе Т , является горизонтальной плоскостью. Из

равенства (2.5) следует, что

Т = − (F + Фе )

Сила m g , равная по модулю и направленная противоположно силе Т ,

называется силой тяжести.

mg = − T = F + Фе .

Сила тяжести равна геометрической сумме силы земного притяжения

и силы инерции, обусловленной суточным вращением Земли.

Таким образом, вращение Земли учитывается при определении силы

тяжести, включением в нее переносной силы инерции.

Модуль силы инерции

Фе = mae n = mω 2 r .

Величина этой силы в виду малости значения ω 2

очень мала. Наибольшее

значение сила Ф е имеет на экваторе и составляет там 0,034% от

величины силы притяжения.

Влияние вращения Земли на движение тел у ее

поверхности

Рассмотрим движение материальной точки по меридиану с юга на север

(рис.3) и, так как переносная сила инерции включается в силу тяжести, то

проанализируем влияние на это движение

силы инерции Кориолиса. Ускорение

Кориолиса a C = 2 ω e × V r направлено по

параллели на запад, а сила инерции Кориолиса

направлена в противоположную сторону – на

восток. Следовательно, материальная точка

при своем движении будет отклоняться на

восток. Расчеты показывают, что сила

инерции Кориолиса мала по сравнению с

силой тяжести, поэтому в большинстве

инженерных расчетов, где скорость движения

невелика, силой инерции пренебрегают, и

систему, связанную с Землей, считают

инерциальной. Однако учет вращения Земли приобретает значение в тех

случаях, когда движение продолжается длительное время и действие силы

инерции Кориолиса накапливается. Этим обстоятельством объясняется то,

что в северном полушарии реки размывают правый берег, в южном – левый. Точно также в северном полушарии при движении по железной дороге давление на правый рельс больше, чем на левый.

Силу инерции Кориолиса также необходимо учитывать при стрельбе на дальние расстояния, например, при расчете траекторий межконтинентальных баллистических ракет.

Пример решения задачи на динамику относительного движения материальной точки.

Шарик массой m = 0,1 кг, прикрепленный к концу горизонтальной пружины, коэффициент жесткости которой с = 2 Н/м, находится в трубке, вращающейся с постоянной угловой скоростью ω = 4 1/c вокруг вертикальной оси z1 . Длина недеформированной пружины l0 = 0,2 м.

Определить уравнение относительного движения шарика, найти его координату, давление на стенку трубки, а также абсолютную скорость и абсолютное ускорение в момент времени t = 0,2 c.

Свяжем подвижную

Фс

систему отсчета Oxyz с

Фе

вращающейся трубкой,

направив ось х вдоль

ae n

трубки и поместив начало

координат в точке О

(рис.4), ось z совместим с

осью вращения трубки, ось

у проведем

перпендикулярно

плоскости Охz.

Движение шарика, принимаемого за материальную точку М, внутри трубки является относительным, переносным - вращательное движение трубки вокруг оси Oz. На точку действуют сила тяжести m g , сила упругости F , и реакция стенки трубки N .

Основной закон относительного движения точки:

ma r = mg + F + N + Фе + Фс , (а)

где Ф е = − m a e - переносная сила инерции; Ф с = − m a с - сила инерции Кориолиса.

Переносная сила инерции направлена противоположно переносному ускорению точки. Так как вращение трубки происходит с постоянной

угловой скоростью, то переносное ускорение является нормальным и

направлено по оси х к точке О . Следовательно, Ф е направлена по оси х вправо.

Нормальное ускорение точки равно: a e n = ω e 2 OM = ω e 2 x . Модуль Фе = ma е = m ω e 2 x .

Ускорение Кориолиса определяется векторным равенством a с = 2 ω e × V r ,

в соответствии с которым вектор a с в данном случае направлен

перпендикулярно плоскости Охz в положительном направлении оси Оу (рис.4), следовательно, сила инерции Кориолиса направлена за чертеж.

Модуль силы инерции Кориолиса равен Ф с = 2m ω e V r , так как векторы ω e и V r перпендикулярны.

Под действием силы инерции Кориолиса шарик будет прижиматься к задней стенке трубки, поэтому полную нормальную реакцию стенки разложим на две взаимно-перпендикулярные составляющие N y и N z .

N = N y + N z

Сила упругости равна коэффициенту жесткости пружины, умноженному на ее удлинение F = c l , и направлена в сторону, противоположную удлинению, величина которого l = c (x − l 0 ) .

Составим дифференциальное уравнение относительного движения шарика:

Ф e − F

x − c(x − l0 ) .

M ω e

После сокращения на m и элементарных преобразований получим

+ (m

−ω

) x = m l0

Подставим численные значения

x + 4 x = 4 .

Общее решение полученного дифференциального уравнения имеет вид:

х = х1 + х2 .

где х1 – общее решение соответствующего однородного дифференциального уравнения, х2 – частное решение дифференциального уравнения (б).

Составим характеристическое уравнение и найдем его корни:

r 2 + 4 r = 0 . r = ± 2 i .

Таким образом, общее решение однородного уравнения имеет вид

х1 =С1 соs 2t + C2 sin2t

Частное решение уравнения (б) находим в форме х2 = В. Здесь B-

постоянная величина. Подставим это значение в уравнение (б), учитывая,

что х 2 = 0 , получим В = 1.

Решение (в) дифференциального уравнения относительного движения

точки М принимает вид

х = С1 соs 2t + C2 sin2t +1.

Скорость этого движения

х = -2С1 sin2t +C2 cos2t .

Подставив начальные условия t = 0, х0 = 0,2 м,

0 в уравнения (г) и (д),

получим значения постоянных интегрирования:

С1 = - 0,8, С2 =0.

Уравнение относительного движения точки М принимает вид:

х = - 0,8 соs 2t +1.

X = 1,6sin 2t .

Скорость относительного движения шарика

Относительное ускорение

a r =

(1,6sin 2t ) = 3,2cos 2t .

При t = 0,2 c:

х = - 0,8соs 0,4 + 1 = - 0,8 cos 22,90 + 1 = 0,264. м. Vr = 1,6 sin 0,4 = 1,6 sin 22,90 = 1,024 м/c.

аr = 3,2 cos 0,4 =3,2 cos22,90 = 2,94 м/c.

Ускорение Кориолиса при t = 0,2 c. Равно ас =2 ωe Vr = 8,1 м/c.

Для определения составляющих реакции стенки трубки N y и N z запишем проекции векторного равенства (а) на оси у и z .

0 = Ny –Фс , 0 = Nz –mg, откуда Ny = Фс , Nz = mg.

Сила инерции Кориолиса

Фс = 2m ωe Vr = 2·0,1· 4 ·1,024 =0,81H. Следовательно, Ny = Фс = 0,81(Н), Nz = mg = 9,81(Н).

Реакция стенки трубки N = N y 2 + N z 2 = 0,81 2 + 0,981 2 = 1,2 H Абсолютная скорость шарика

V = Vе + Vr

Переносная скорость V e перпендикулярна ОМ и направлена в сторону вращения трубки.

Ve = ωe OM = ωe x = 4· 0,264 = 1,056 м/с.

Так как векторы V е и V r взаимно перпендикулярны, то модуль

Абсолютное ускорение шарика

a = a e + a r + a с .

Модуль переносного ускорения равен

ае = ωe 2 ОМ = ωe 2 х1 = 4,22 м/c.

Найдем проекции абсолютного ускорения на оси Ох и Оу:

ах = - ае + аr =-4,33 + 2,94 = - 2,39,

ау = аk = 8,44.

Модуль абсолютного ускорения равен

а = а х 2 + а у 2 = (− 1,39)2 + 8,442 = 8,55 м / с .

Контрольные вопросы.

1. Какая система отсчета называется инерциальной?

2. Какая система отсчета не является инерциальной?

3. Какое движение точки называется относительным?

4. Записать основной закон относительного движения точки.

5. Какое движение точки называется переносным?

6. Что называется переносной силой инерции?

7. Чему равна и как направлена переносная сила инерции, если переносное движение является поступательным?

8. Как определяется переносная сила инерции, если переносное движение является равномерным вращением вокруг неподвижной оси?

9. Что называется силой инерции Кориолиса?

10.Как направлен вектор угловой скорости?

11.Как направлена сила инерции Кориолиса?

12.Записать модуль силы инерции Кориолиса.

13.Записать дифференциальные уравнения движения материальной точки относительно системы координат, движущейся поступательно

14.Записать дифференциальные уравнения движения точки относительно системы координат, совершающей вращение вокруг неподвижной оси.

При решении большинства технических задач мы считаем си­стему отсчета, связанную с Землей, неподвижной (инерциальной). Тем самым мы не учитываем суточное вращение Земли и ее движение по орбите вокруг Солнца. Таким образом, считая систему отсчета, связанную с Землей, инерциальной, мы по существу прене­брегаем ее суточным вращением вместе с Землей по отноше­нию к звездам. Это вращение происходит со скоростью: 1 оборот за 23 часа 56 минут 4 секунды, т. е. с угловой скоростью

Исследуем, как сказывается такое довольно медленное вращение на равновесии и движении тел.

1. Относительный покой на поверхности Земли. Сила тяжести. Рассмотрим материальную точку, лежащую на неподвижной относительно Земли гладкой «горизонтальной» плоскости (рис.13). Условие ее равновесия по отношению к Земле состоит в том, что , где - сила притяжения Земли, - реакция плоскости, -переносная сила инерции. Так как , то сила имеет только нормальную составляющую, направленную перпендикулярно к оси вра­щения Земли. Сложим силы и введем обозначение

Рис.13

Тогда на точку М будут действовать две силы и , уравно­вешивающие друг друга. Сила и представляет собою ту силу, ко­торую мы называем силой тяжести.

На­правление силы будет направлением верти­кали в данном пункте поверхности, а плоскость, перпендикулярнаяк и будет горизонтальной плоскостью. По модулю (r - расстояние точки М от земной оси) и величина малая по сравнению с , так как величина очень мала. Направление силы мало отличается от направления .

При взвешивании тел мы определяем силу , т.к. именно с такой силой тело давит на тело весов. То есть, вводя в уравнения равновесия силу тяжести , мы вводим в них и силу , т.е. фак­тически учитываем влияние вращения Земли.

Поэтому при состав­лении уравнений равновесия тел по отношению к Земле ника­ких поправок на вращение Земли вводить не надо. В этом смысле равновесие по отношению к Земле можно считать абсолютным.

а) Движение по земной поверхности. При движении точки по меридиану в северном полушарии с севера на юг кориолисово ускорение направлено на восток, а сила - на запад. При движении с юга на север сила будет, очевидно, направлена на восток. В обоих случаях, как мы видим, эта сила будет отклонять точку вправо от направления ее движения. Если точка движется по параллели на восток, то ускорение будет направлено вдоль радиуса МС параллели (рис.14), а сила в противоположную сторону. Вертикальная составляющая этой силы (вдоль ОМ) будет несколько изменять вес тела, а горизонтальная составляю­щая будет направлена к югу и будет отклонять точку тоже вправо от на­правления движения. Аналогичный ре­зультат получим при движении по па­раллели на запад.


Рис.14

Отсюда заключаем, что в север­ном полушарии тело, движущееся вдоль земной поверхности по любо­му направлению будет вследствие вращения Земли отклоняться вправо от направления движения. В южном полушарии отклонение будет происхо­дить влево.

Этим обстоятельством объясняется то, что реки, текущие в северном по­лушарии, подмывают правый берег (закон Бэра). В этом же при­чина отклонений ветров постоянного направления (пассаты) и мор­ских течений.



Поделиться