Как был открыт водород. Кто открыл состав воды

03.10.2015

Всем нам известно, что самый распространенный элемент в нашей Вселенной - это водород. Он является основной составляющей звезд. От всех атомов его доля составляет 88,6 %. Происходящие на Земле процессы просто не возможны без действия водорода. Он, в отличие от многих других элементов, находится в виде различных соединениях. Его массовая доля простого вещества в воздухе ничтожно мала.

Название элемента на латинском языке Hydrogenium состоит из двух греческих слов, в переводе означающих вода и рождаю - то есть рождающий воду. Так назвал его Лавуазье, но в XVII в. академик В.М. Севергин решил ознаменовать этот элемент как «водотворное вещество». Название водород в России было предложено в 1824 году химик Соловьев, по схожести как «кислород». В химической литературе России до XIX века можно увидеть такие названия элемента - горючий газ , загораемый воздух или водотвор , водородный газ , воодтворное существо .

Опыты по изучению и открытию многих газов долгое время оставались без внимания, так как экспериментаторы попросту не замечали этих невидимых веществ. Лишь со временем было закреплено убеждение, что газ - это такой же материал, без исследования которого не возможно полностью понять химическую основу мира. Открытие водорода произошло еще в самом развитии химии как науки. В XI-XII веках был выделен газ, во время взаимодействия металла с кислотами. Парацельс, Ломоносов, Бойл и другие ученые и изобретатели наблюдали его горение. Но основная их часть в те годы была привержена теории о флогистоне.

Ломоносов, в 1745 году, при написании диссертации описал получение газа при действии кислот на металлы. Гипотеза о флогистоне была также высказана и химиком Генри Кавендишем, который более подробно исследовал свойства водорода, дав ему название «горючий воздух». Только к концу XII века, используя современные лабораторные приборы, Лавуазье, совместно с Менье, осуществили водный синтез. Ими был сделан анализ водяного пара, который был разложен с применением горячего железа. Благодаря этому опыту стало понятно, что водород присутствует в составе воды, ко всему он может быть получении из нее.

Рубеж XIII-XIX века ознаменовался одним открытием - было обнаружено, что атом водорода достаточно легок, наравне с другими элементами, было принято считать вес этого элемента как единицу сравнения. Его атомной массе было предписано значение 1. Когда Лавуазье представил таблицу простых веществ, он отнес туда водород к 5 простым телам (водород, кислород, азот, свет, тепло). Было принято считать - эти вещества были из 3-х природных царств и считались элементами тел.

Помимо открытия самого элемента в дальнейшем учеными были обнаружены его изотопы. Произошло это в более современное время, в 1931 году. Группа ученых занималась исследованием остатка, который образовался в ходе продолжительного выпаривания водорода в жидком состоянии. В ходе опыта был обнаружен водород, атомное число которого равнялось 2. Ему дали название Дейтерий (второй). По истечении всего 4-х лет, при длительном электролизе воды был обнаружен еще более тяжелый изотоп, который получил название Тритий (третий).

В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.


Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor - вода + gennao - рождаю), т. е. «рождающий воду».

Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

Физические свойства

Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение - довольно сложный и затратный процесс. Критическое давление вещества - 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

Удельная теплоемкость вещества в тех же условиях - 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо - в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность - 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость - 13,8 спуаз в тех же условиях).

Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним - на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

Н₂ + ½О₂ = Н₂О,

выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С - неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух - 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

CuO + H₂ = Cu + H₂O и т. д.

С разными галогенами водород образует галогеноводороды, к примеру:

Н₂ + Cl₂ = 2НСl.

Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом - исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

ЗН₂ + N₂ = 2NН₃.

При нагревании водород активно реагирует с серой:

Н₂ + S = H₂S (сероводород),

и значительно труднее - с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

2Н₂ + С (аморфный) = СН₄ (метан).

Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

Н₂ + 2Li = 2LiH.

Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

С n Н₂ n + Н₂ = С n Н₂ n ₊₂.

Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

Получение водорода

Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

СН₄ + H₂О = СО + ЗН₂.

Неполное окисление углеводородов кислородом:

СН₄ + ½О₂ = СО + 2Н₂.

Синтезированный оксид углерода (II) подвергается конверсии:

СО + Н₂О = СО₂ + Н₂.

Водород, производимый из природного газа, является самым дешевым.

Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом - в химической, для производства аммиака.

Массовые потребители вещества - производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы - тритий и дейтерий.

Биологическая роль водорода

Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

Имеет форму шара, а представляли себе ее в виде диска и даже плавающего прямоугольника, огонь, воздух, землю и воду считали четырьмя основными элементами мироздания . Кто перестал называть воду элементом? Кто лишил ее этого высокого звания? ? Целый ряд смелых химиков, работавших независимо друг от друга, почти одновременно сделали это открытие.

Первооткрыватели кислорода и водорода

С тех пор как химики оттеснили алхимиков и чернокнижников от реторт, семья элементов сразу увеличилась. Если сто лет тому назад она насчитывала только 60 членов, то теперь, считая искусственно полученные элементы, их стало сто. Их названия, химический знак, атомный вес и порядковый номер мы найдем в любой химической таблице. Только имена «предков» исчезли из нее. Первооткрывателями кислорода и водорода считаются:
  1. Французский химик Антуан Лоран Лавуазье . Он был управляющим селитровым и пороховым заводом, а позднее, после победы французской буржуазной революции, комиссаром национальной казны, одним из влиятельнейших людей Франции.
  2. Английский химик Генри Кавендиш , родом из старой герцогской семьи, пожертвовавший значительную долю своего состояния науке.
  3. Соотечественник Кавендиша, Джозеф Пристли . Он был священником. Как ярый сторонник французской революции, Пристли был изгнан из Англии и бежал в Америку.
  4. Известный шведский химик Карл Вильгельм Шееле, фармацевт.
Это их имена. А что они сделали?

Кислород - в воде и воздухе

Лавуазье, Пристли и Шееле произвели ряд опытов. Сначала они открыли кислород в воде и воздухе . Сокращенно в химии он обозначается буквой «О». Когда мы говорили:
Без воды нет жизни,
этим еще не было сказано, кому, собственно, вода обязана своей живительной силой. Теперь мы можем ответить на этот вопрос. Живительная сила воды заключается в кислороде . Кислород важнейший элемент воздушной оболочки, окружающей Землю. Без кислорода гаснет жизнь, как пламя свечи, поставленной под стеклянную банку. Даже самый большой пожар утихает, если горящие предметы забросать песком, прекратив к ним доступ кислорода.
Теперь вы понимаете, почему огонь в печке так плохо горит, если вьюшка закрыта? Такой же процесс сгорания происходит и в нашем организме при обмене веществ. Паровая машина работает за счет использования тепловой энергии горящего угля. Точно так же наш организм использует энергию тех питательных веществ, которые мы потребляем. Воздух, который мы вдыхаем, необходим для того, чтобы «печка» - наш организм - хорошо горела, - ведь наше тело должно иметь определенную температуру. При выдохе мы выделяем воду в виде пара и продукты сгорания.
Лавуазье изучал эти процессы и обнаружил, что горение - это быстрое соединение различных веществ с кислородом воздуха . При этом возникает теплота. Но Лавуазье не удовлетворился тем, что открыл кислород . Он хотел знать, с какими веществами соединяется кислород.

Открытие водорода

Почти одновременно с Кавендишем, который тоже разложил воду на составные части, Лавуазье открыл водород . Этот элемент получил название «Hydrogenium», что значит: Водород обозначается буквой «Н». Исследуем еще раз, действительно ли водород находится в составе воды . Наполним пробирку льдом и нагреем ее над пламенем спиртовки. (Спирт, как и всякий алкоголь, богат водородом.) И что же мы увидим? Наружная сторона пробирки покроется как бы росою. Или подержим чистый нож над пламенем свечи. Нож тоже покроется каплями воды. Откуда же берется вода? Вода возникает из пламени. Значит, огонь - источник воды! Это не новое открытие, и все же оно поражает. Химики сказали бы так: при сгорании водорода, иначе говоря, при соединении водорода с кислородом образуется водяной пар . Потому-то пробирка и нож покрываются каплями воды. Так произошло открытие состава воды . Итак, водород, который в 16 раз легче кислорода и в 14 раз легче воздуха, горит! При этом он образует большое количество тепла. Прежде воздушные шары наполняли водородом. Это было очень опасно. Теперь вместо водорода применяют гелий. Можно ответить и на второй вопрос:
Почему вода не горит?
Этот вопрос кажется настолько простым, что мы его сначала даже и не задавали. Большинство скажет:
Вода мокрая, поэтому она и не горит.
Неверно. Бензин тоже «мокрый», но лучше не пробуйте узнать, горит ли он! Вода не горит потому, что она сама образовалась в результате горения. Это, можно сказать, «жидкая зола» водорода. Вот почему вода тушит огонь не хуже, чем песок.

После работ Дж. Блэка многие химики в различных лабораториях Англии, Швеции, Франции, Германии занялись изучением газов. Больших успехов достиг Г. Кавендиш. Все экспериментальные работы этого скрупулезного ученого были основаны на количественном методе исследования. Он широко использовал взвешивание веществ и измерение газовых объемов, руководствуясь законом сохранения массы. В первой работе Г. Кавенднша по химии газов (1766) описаны способы получения и свойства .

«Горючий воздух» был известен и раньше (Р. Бойль, Н. Лемери). В 1745 г. М. В. Ломоносов, например, отмечал, что «при растворении какого-либо неблагородного металла, особенно , в кислотных спиртах из отверстия склянки вырывается горючий пар, который представляет собой не что иное, как флогистон». Это примечательно в двух отношениях: во-первых, за много лет до Кавендиша М. В. Ломоносов пришел к выводу, что «горючий воздух» (т. е. водород) представляет собой флогистон; во-вторых, из приведенной цитаты следует, что М. В. Ломоносов принимал учение о флогистоне.

Но выделить «горючий воздух» и изучить его свойства никто до Г. Кавендиша не пытался. В химическом трактате «Три работы, содержащие опыты с искусственными видами воздуха» (1766) он показал, что существуют газы, которые отличаются от воздуха, а именно, с одной стороны, «лесной, или связанный, воздух», который, как установил Г. Кавендиш, оказался в 1,57 раза тяжелее обычного воздуха, с другой стороны, «горючий воздух» - водород. Г. Кавендиш получал его действием разбавленных и кислот на различные металлы. Тот факт, что при действии на (цинк, железо) выделялся один и тот же газ (водород), окончательно убедил Г. Кавендиша в том, что все металлы содержат флогистон, который выделяется при превращении металлов в «земли». Английский ученый принимал водород за чистый флогистон, поскольку газ горит, не оставляя остатка, и оксиды металлов, обрабатываемые этим газом, при нагревании восстанавливаются в соответствующие металлы.

Генри Кавендиш

Г. Кавендиш как сторонник теории флогистона считал, что не вытесняется металлом из кислоты, а выделяется вследствие разложения «сложного» металла. Реакцию получения «горючего воздуха» из металлов он представлял так:

Какими способами и приборами пользовался «отец химии газообразных веществ», можно видеть из следующего. Покидая Лидс, Дж. Пристли по просьбе одного из знакомых оставил ему глиняное корыто, которое он применял как пневматическую ванну в своих опытах по изучению состава воздуха и которое, иронически замечает Дж. Пристли, «ничем не отличалось от корыт, в которых прачки стирают белье». В 1772 г. Дж. Пристли заменил в пневматической ванне воду ртутью, что позволило ему впервые получить в чистом виде и изучить растворимые в воде газы: «солянокислый воздух» () и «летучий щелочной воздух» - бесцветный газ с удушливым резким запахом. Это был , который он получил при нагревании хлорида аммония:

2NH 4 Cl + CaO = 2NH 3 + CaCl 2 + H 2

«Золотая россыпь, открытая Пристли, была… ртутная ванна,- писал В. Оствальд. - Один шаг вперед в технической стороне дела-замена воды - вот ключ к большинству открытий Пристли». Дж. Пристли наблюдал, что если через аммиак пропускать электрическую искру, то объем его резко увеличивается. В 1785 г. К.- Л. Бертолле установил, что это объясняется разложением аммиака на азот и водород. Дж. Пристли наблюдал, что при взаимодействии двух резко пахнущих, газов (НСl и NH 3) образуется белый порошок без запаха, (NH 4 Cl). В 1775 г. Дж. Пристли получил , а в. 1796 г. - , который принял за чистый флогистон.

История открытия водорода

Многие исследователи проводили опыты с кислотами. Было замечено, что при действии кислот на некоторые металлы выделяются пузырьки газа. Полученный газ легко воспламенялся, и его назвали «горючим воздухом».

Подробно свойства этого газа были изучены английским ученым Г. Кавендишем в 1766г. Он помещал металлы в растворы серной и соляной кислот и во всех случаях получал одно и то же легкое газообразное вещество, которое позже назвали водородом.

Странным на первый взгляд делом занялся однажды английский ученый Генри Кавендиш: он стал пускать мыльные пузыри. Но это не было развлечением. Перед этим он заметил, что, когда железные опилки обливают серной кислотой, появляется много пузырьков какого-то газа. Что это за газ?

Ученый вывел его по трубочкам из сосуда. Газ был невидим. Имеет ли он запах? Нет. Тогда он наполнил им мыльные пузыри. Они легко поднялись вверх! Значит, газ легче воздуха! А если поджечь газ то, он загорится голубоватым огоньком. Но удивительно то, что при горении получилась вода! Генри Кавендиш назвал новый газ горючим воздухом. Ведь он, как и обычный воздух, был без цвета и запаха. Все это происходило во второй половине 18-го в.

Позже французский химик Антуан Лоран Лавуазье сделал обратное: получил «горючий газ» из воды. Он же дал новому газу и другое имя -- водород, то есть «рождающий воду». Потом ученые установили, что водород -- самое легкое из всех известных людям веществ, а его атомы устроены проще всех других.

Водород очень распространен. Он входит в состав всех живых существ, организмов, растений, горных пород. Он есть везде: не только на Земле, но и на других планетах и звездах, на Солнце; особенно много его в космическом пространстве. Превращения, которые происходят с водородом при гигантском давлении и температуре в десятки миллионов градусов, дают возможность Солнцу излучать тепло и свет. Больше всего различных соединений водород образует с углеродом: нефть и горючие сланцы, бензин и черный асфальт. Такие соединения называются углеводородами. Водород широко применяется при сварке и резке металлов. Если к соединениям углерода и водорода добавить кислород, получаются новые, соединения -- углеводы, например, такие не похожие друг на друга вещества, как крахмал и сахар. А если водород соединить с азотом, получится тоже газ -- аммиак. Он необходим для изготовления удобрений. Многие достоинства водорода -- экологически безвреден, энергоемок, находится в природе в изобилии -- позволили использовать его как ракетное топливо. Те же особенности водорода делают его перспективным и в качестве топлива авиационного.

Водород -- самый легкий, самый простой и самый распространенный химический элемент во Вселенной. Он составляет примерно 75% от всей массы элементов в ней. В больших количествах водород обнаружен в звездах и планетах типа «газовый гигант». Он играет ключевую роль в протекающих в звездах реакциях синтеза. Водород является газом с молекулярной формулой H2. При комнатной температуре и нормальном давлении водород является безвкусным, бесцветным и лишенным запаха газом. Под давлением и при сильном холоде водород переходит в жидкое состояние. Хранимый в этом состоянии водород занимает меньше места, чем в своей «нормальной» газообразной форме. Жидкий водород используется в том числе и в качестве ракетного топлива. При сверхвысоком давлении водород переходит в твердое состояние и становится металлическим водородом. В этом направлении ведутся научные исследования. Водород используется в качестве альтернативного топлива для транспорта. Химическая энергия водорода высвобождается при его сжигании способом, подобным тому, который применяется в традиционных двигателях внутреннего сгорания. На его основе также создаются топливные элементы, в которых задействован процесс образования воды и электричества путем осуществления химической реакции водорода с кислородом. Он потенциально опасен для человека, поскольку может возгораться при соприкосновении с воздухом. Кроме того, этот газ не годится для дыхания.

С 1852 года -- с тех самых пор, как первый дирижабль на основе водорода был создан Генри Гиффардом -- водород использовался в воздухоплавании. Позднее водородные дирижабли называли «цеппелинами». Их использование было прекращено после крушения дирижабля «Гинденбург» в 1937 году. Авария произошла в результате возгорания.

Так же водород широко применяется в нефтяной и химической отраслях, а также часто используется для различных физических и инженерных задач: например, в сварочном деле и в качестве охлаждающего вещества. Молекулярная формула перекиси водорода H2O2. Это вещество часто используется для отбеливания волос и в качестве чистящего средства. В виде медицинского раствора оно используется также для обработки ран.

Так как водород в 14 раз легче воздуха, если вы наполните им воздушные шары, они будут отдаляться от Земли со скоростью 85 км в час, что в два раза превышает скорость шаров, наполненных гелием, и в шесть раз - скорость шаров, наполненных природным газом.

химический водород перекись газ

Список используемой литературы

  • 1. http://www.5.km.ru/
  • 2. http://hi-news.ru/science/ximiya-14-faktov-o-vodorode.html.


Поделиться